Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Autor: =Baer, Melvin R.
2 registros cumplieron la condición especificada en la base de información BIBCYT. ()
Registro 1 de 2, Base de información BIBCYT
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Margolis , Stephen B. ; Baer, Melvin R.
Título: A Singular-Perturbation Analysis of the Burning-Rate Eigenvalue for a Two-Temperature Model of Deflagrations in Confined Porous Energetic Materials
Páginas/Colación: pp. 627-663
Url: Ir a http://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJMAP000062000002000627000001&idtype=cvips&gifs=Yeshttp://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJMAP000062000002000627000001&idtype=cvips&gifs=Yes
SIAM Journal on Applied Mathematics Vol. 62, no. 2 Oct./Dec. 2001
Información de existenciaInformación de existencia

Palabras Claves: Palabras: ASYMPTOTICS BEYOND ALL ORDERS ASYMPTOTICS BEYOND ALL ORDERS, Palabras: CONFINEMENT CONFINEMENT, Palabras: DEFLAGRATION DEFLAGRATION, Palabras: ENERGETIC MATERIAL ENERGETIC MATERIAL, Palabras: MATCHED ASYMPTOTIC EXPANSIONS MATCHED ASYMPTOTIC EXPANSIONS, Palabras: SINGULAR PERTURBATION SINGULAR PERTURBATION, Palabras: TWO-PHASE FLOW TWO-PHASE FLOW

Resumen
RESUMEN

RESUMEN

 

Deflagrations in porous energetic materials are characterized by regions of two-phase flow, where, for sufficiently large flow velocities, temperature-nonequilibration effects can significantly affect the overall burning rate. In the present work, we analyze a two-temperature model of deflagrations in confined porous propellants that exhibit a bubbling melt layer at their surfaces. For appropriately scaled rates of interphase heat transfer, the problem reduces to a nontrivial eigenvalue calculation in the thin reaction region where final conversion of the liquid to gaseous products occurs. For realistically small values of the gas-to-liquid thermal-conductivity ratio, solutions in the reaction zone take on a singular-perturbation character that can be exploited to derive an asymptotic expansion of the burning-rate eigenvalue. The resulting problem requires a rather sophisticated application of techniques in matched asymptotic expansions (asymptotics beyond all orders) stemming from the appearance of an infinite number of logarithmic terms in the asymptotic development that must be summed to arrive at the desired level of approximation. The physical effects of temperature nonequilibrium, which decreases the rate of heat transfer from the reacting liquid phase to the gas-phase products and thus allows a greater amount of thermal energy to remain in the reacting phase, are to increase the burning rate relative to the single-temperature limit and to sharpen the transition from "conductive" to "convective" burning.

 

Registro 2 de 2, Base de información BIBCYT
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Margolis, Stephen B. ; Baer, Melvin R.
Título: Mathematical Modelling and Numerical Simulation of a Non-Newtonian Viscous Flow through a Thin Filter
Páginas/Colación: pp. 597-626
Url: Ir a http://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJMAP000062000002000627000001&idtype=cvips&gifs=Yeshttp://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJMAP000062000002000627000001&idtype=cvips&gifs=Yes
SIAM Journal on Applied Mathematics Vol. 62, no. 2 Oct./Dec. 2001
Información de existenciaInformación de existencia

Palabras Claves: Palabras: ASYMPTOTIC EXPANSION ASYMPTOTIC EXPANSION, Palabras: BOUNDARY LAYER BOUNDARY LAYER, Palabras: HOMOGENIZATION HOMOGENIZATION, Palabras: NON-NEWTONIAN FLOW NON-NEWTONIAN FLOW, Palabras: NUMERICAL SIMULATION NUMERICAL SIMULATION

Resumen
RESUMEN

RESUMEN

We consider non-Newtonian flows, like polymer in fusion or in solution, pushed through a thin periodic filter with period and thickness $\varepsilon \ll 1$. Starting from the Stokes system with a nonlinear viscosity obeying Carreau's law (with a high rate viscosity or without it), we study the asymptotic behavior of the flow as $\varepsilon \rightarrow 0$. We obtain the global convergence of the pressure in the whole domain and not separately in the upper part and in the lower part. Numerical tests for various fluids and various filter shapes are comparing results given by the homogenized model with the ones given by the microscopic Carreau--Stokes model.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (18.119.162.226)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
18.119.162.226 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 18.119.162.226
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *