Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Autor: =Barrett, John W.
Sólo un registro cumplió la condición especificada en la base de información BIBCYT.
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Barrett, John W. ; Garcke, Harald ; Nürnberg, Robert
Título: Finite Element Approximation of Surfactant Spreading on a Thin Film
Páginas/Colación: pp. 1427 - 1464
Url: Ir a http://epubs.siam.org/sam-bin/dbq/article/39799http://epubs.siam.org/sam-bin/dbq/article/39799
Siam Journal on Numerical Analysis Vol. 41, no. 4 Aug/Oct 2004
Información de existenciaInformación de existencia

Palabras Claves: Palabras: CONVERGENCE ANALYSIS CONVERGENCE ANALYSIS, Palabras: FINITE ELEMENTS FINITE ELEMENTS, Palabras: FOURTH ORDER DEGENERATE PARABOLIC SYSTEM FOURTH ORDER DEGENERATE PARABOLIC SYSTEM, Palabras: SURFACTANT SURFACTANT, Palabras: THIN FILM FLOW THIN FILM FLOW

Resumen
We consider a fully practical finite element approximation of the following system of nonlinear degenerate parabolic equations: \begin{alignat}{2} \textstyle{\frac{\partial u}{\partial t}} + \textstyle \frac{1}{2} \,\nabla . (u^2 \,\nabla [\sigma(v)]) - \textstyle \frac{1}{3}\, \nabla .(u^3 \,\nabla w) &= 0, &&%\quad\mbox{in} \;\;\Omega_T, \qquad %\hspace{2cm} \nonumber \\ w = - c \, \Delta u + a \, u^{-3} - \delta \, u^{-\nu}, \nonumber \\ \textstyle{\frac{\partial v}{\partial t}} + \nabla . (u\,v\,\nabla [\sigma(v)]) - \rho \,\Delta v - \textstyle \frac{1}{2}\, \nabla .(u^2\,v \,\nabla w) &= 0. &&%\quad\mbox{in} \;\;\Omega_T. \nonumber %\\ \end{alignat} The above models a surfactant-driven thin film flow in the presence of both attractive, a >0, and repulsive, $\delta >0$ with $\nu >3$, van der Waals forces, where u is the height of the film, v is the concentration of the insoluble surfactant monolayer, and $\sigma(v):=1-v$ is the typical surface tension. Here $\rho \geq 0$ and c>0 are the inverses of the surface Peclet number and the modified capillary number. In addition to showing stability bounds for our approximation, we prove convergence in one space dimension when $\rho >0$ and either $a=\delta=0$ or $\delta > 0$. Furthermore, iterative schemes for solving the resulting nonlinear discrete system are discussed. Finally, some numerical experiments are presented.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (18.119.133.138)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
18.119.133.138 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 18.119.133.138
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *