Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Autor: =Basu, Chumki
Sólo un registro cumplió la condición especificada en la base de información BIBCYT.
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Hirsh, Haym hirsh@cs.rutgers.edu
Oprima aquí para enviar un correo electrónico a esta dirección ; Basu, Chumki cbasu@cs.rutgers.edu
Oprima aquí para enviar un correo electrónico a esta dirección; Davison, Brian D. davison@cs.rutgers.edu
Oprima aquí para enviar un correo electrónico a esta dirección
Título: Learning to personalize
Páginas/Colación: pp.102-106
Communications of the ACM Vol. 43, no. 8 August 2000
Información de existenciaInformación de existencia

Resumen
The article focuses on cognitive modeling for games and animation

The article deals with self-customizing software, and investigates kinds of patterns that can be recognized by the machine learning algorithm. A self-customizing software should be able to recognize stereotypical sequences of action, like steps involved in sending electronic-mail. Many researchers have developed methods that predict user's actions solely based on user's history of past interactions with a computer. Methods that look solely at the user's single immediately preceding action, comparing it to past situations where the user previously took that action, often give rise to evenhanded predictions. The author works on the Incremental Probabilistic Action Modeling (IPAM) prediction method, which learns to predict actions of a user interacting with the Unix command-line shell. IPAM predicts by simply recording commands observed, and maintains a probability distribution over all command that may follow. IPAM focuses on user's last interaction, paying more attention to the recent past, through its scaling down of probabilities of those actions not taken at the current point in time.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (3.17.79.188)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
3.17.79.188 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 3.17.79.188
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *