Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Autor: =Batcho, Paul F.
Sólo un registro cumplió la condición especificada en la base de información BIBCYT.
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Batcho, Paul F.
Título: The Energy Operator and New Scaling Relations for the Incompressible Navier--Stokes Equations
Páginas/Colación: pp. 70-93
Url: Ir a http://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJMAP000062000001000070000001&idtype=cvips&gifs=Yeshttp://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJMAP000062000001000070000001&idtype=cvips&gifs=Yes
SIAM Journal on Applied Mathematics Vol. 62, no. 1 May/Sep. 2001
Información de existenciaInformación de existencia

Palabras Claves: Palabras: EIGENFUNCTION EXPANSION EIGENFUNCTION EXPANSION, Palabras: GALERKIN METHOD GALERKIN METHOD, Palabras: NAVIER-STOKES EQUATIONS NAVIER-STOKES EQUATIONS

Resumen
RESUMEN

RESUMEN

 

The incompressible Navier--Stokes equations have been widely studied due to their vast ability to model hydrodynamic phenomena. The nonlinear character of these equations produces a hierarchical system of dynamical scales that offer challenging barriers to computation simulation and scale elimination modeling. Here, the incompressible Navier--Stokes equations are decomposed and studied under the context of global eigensystems that have a direct relation to the dynamical character of the scales-of-motion. In particular, the self-adjoint linear Reynolds--Orr operator is shown to correspond to the energy operator of this nonlinear system of equations and has the distinguishing property of having an eigensystem that orders the time derivative of the integral kinetic energy for the nonlinear Navier--Stokes operator. The eigensystem of the Reynolds--Orr operator is shown to yield a dynamical range of scales that can be characterized by an energy-containing range, an inertial range, and a dissipation range. It is shown that a canonical decomposition of the incompressible Navier--Stokes equations has only a finite number of scales that are responsible for the unsteady character of the nonlinear system. Furthermore, a time-dependent growth of the kinetic energy is characterized without the need for a classical linearized instability. Discussions are presented and estimates are made on the various underlying scaling characteristics, and a contrast is made to empirical eigenfunctions found by ordering the integral kinetic energy.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (52.15.223.239)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
52.15.223.239 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 52.15.223.239
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *