Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Autor: =Bhattacharya, Bhaskar
2 registros cumplieron la condición especificada en la base de información BIBCYT. ()
Registro 1 de 2, Base de información BIBCYT
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Bhattacharya, Bhaskar
Título: Optimal use of historical information
Páginas/Colación: pp. 4051-4063
Fecha: December 2009
Journal of Statistical Planning and Inference Vol. 139, no. 12 November 2009
Información de existenciaInformación de existencia

Idioma: Palabras: Inglés Inglés
Palabras Claves: Palabras: BAYESIAN BAYESIAN, Palabras: EFFICIENT RULES EFFICIENT RULES, Palabras: KULLBACK-LEIBLER DIVERGENCE KULLBACK-LEIBLER DIVERGENCE, Palabras: OPTIMIZATION OPTIMIZATION, Palabras: POSTERIOR POSTERIOR, Palabras: POWER PRIOR POWER PRIOR, Palabras: QUALITY-ADJUSTED RULE QUALITY-ADJUSTED RULE

Resumen
When historical data are available, incorporating them in an optimal way into the current data analysis can improve the quality of statistical inference. In Bayesian analysis, one can achieve this by using quality-adjusted priors of Zellner, or using power priors of Ibrahim and coauthors. These rules are constructed by raising the prior and/or the sample likelihood to some exponent values, which act as measures of compatibility of their quality or proximity of historical data to current data. This paper presents a general, optimum procedure that unifies these rules and is derived by minimizing a Kullback-Leibler divergence under a divergence constraint. We show that the exponent values are directly related to the divergence constraint set by the user and investigate the effect of this choice theoretically and also through sensitivity analysis. We show that this approach yields ‘100% efficient’ information processing rules in the sense of Zellner. Monte Carlo experiments are conducted to investigate the effect of historical and current sample sizes on the optimum rule. Finally, we illustrate these methods by applying them on real data sets.

Registro 2 de 2, Base de información BIBCYT
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Bhattacharya, Bhaskar
Título: Testing for ordered failure rates under general progressive censoring
Páginas/Colación: p1775-1786, 12p
Journal of Statistical Planning and Inference Vol. 137, no. 6 June 2007
Información de existenciaInformación de existencia

Resumen
For exponentially distributed failure times under general progressive censoring schemes, testing procedures for ordered failure rates are proposed using the likelihood ratio principle. Constrained maximum likelihood estimators of the failure rates are found. The asymptotic distributions of the test statistics are shown to be mixtures of chi-square distributions. When testing the equality of the failure rates, a simulation study shows that the proposed test with restricted alternative has improved power over the usual chi-square statistic with an unrestricted alternative. The proposed methods are illustrated using data of survival times of patients with squamous carcinoma of the oropharynx.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (3.143.23.38)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
3.143.23.38 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 3.143.23.38
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *