Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Autor: =Billingham, J.
2 registros cumplieron la condición especificada en la base de información BIBCYT. ()
Registro 1 de 2, Base de información BIBCYT
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Billingham, J.
Título: Surface Tension-Driven Flow in a Slender Wedge
Páginas/Colación: 1949-1977 p.
Url: Ir a http://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJMAP000066000006001949000001&idtype=cvips&gifs=Yeshttp://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJMAP000066000006001949000001&idtype=cvips&gifs=Yes
SIAM Journal on Applied Mathematics Vol. 66, no. 6 Aug./Oct. 2006
Información de existenciaInformación de existencia

Palabras Claves: Palabras: BOUNDARY INTEGRAL METHOD BOUNDARY INTEGRAL METHOD, Palabras: FLUID MECHANICS FLUID MECHANICS, Palabras: KUZMAK'S METHOD KUZMAK'S METHOD, Palabras: MOVING CONTACT LINE MOVING CONTACT LINE, Palabras: SIMILARITY SOLUTIONS SIMILARITY SOLUTIONS, Palabras: SURFACE TENSION SURFACE TENSION

Resumen
RESUMEN

RESUMEN

 

We consider an inviscid fluid, initially at rest inside a wedge, bounded by one free surface and one solid surface. When $t=0$, we allow the contact angle to change discontinuously, which leads the free surface to recoil under the action of surface tension. As noted by Keller and Miksis [SIAM J. Appl. Math., 43 (1983), pp. 268–277], a similarity scaling is available, with lengths scaling like $t^{2/3}$. We consider the situation when the wedge is slender, with angle $\epsilon \ll 1$, and the contact angle changes from epsilonto lambdaepsilon. The leading order asymptotic problem for $\lambda = O(1)$, a pair of nonlinear ordinary differential equations, was considered by King [Quart. J. Mech. Appl. Math., 44 (1991), pp. 173–192], numerically for $\lambda = O(1)$ and asymptotically for $|\lambda-1| \ll 1$. In this paper, we begin by considering this system when $1 \ll \lambda \ll \epsilon^{-1}$, and use Kuzmak's method to construct the asymptotic solution. When $\lambda =O(\epsilon^{-1})$, the slope of the free surface becomes of $O(1)$, and it is no longer possible to reduce the problem to ordinary differential equations alone. However, we can approach this problem in a similar manner, even though the underlying oscillator is the solution of a nonlinear boundary value problem for Laplace's equation, and construct an asymptotic solution. In fact, the solution takes the form of a modulated set of waves on fluid of finite depth, with the underlying analytical solution given by Kinnersley [J. Fluid Mech., 77 (1976), pp. 229–241]. The case $\lambda\epsilon = 90^\circ$ is the solution for the inviscid recoil of a wedge of fluid with two free surfaces and semiangle $\epsilon \ll 1$, which was discussed by Billingham and King [J. Fluid Mech., 533 (2005), pp. 193–221]. We also show that no non-self-intersecting solution is available for $\lambda\epsilon > 90^\circ$ as $\epsilon \to 0$, and compare our asymptotic solutions with numerical, boundary integral solutions of the full, nonlinear free boundary problem.

 

Registro 2 de 2, Base de información BIBCYT
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Billingham, J.
Título: The Initial Surface Tension--Driven Flow of a Wedge of Viscous Fluid
Páginas/Colación: 510-532 p.
Url: Ir a http://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJMAP000066000002000510000001&idtype=cvips&gifs=Yeshttp://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJMAP000066000002000510000001&idtype=cvips&gifs=Yes
SIAM Journal on Applied Mathematics Vol. 66, no. 2 Nov. 2005/Jan. 2006
Información de existenciaInformación de existencia

Palabras Claves: Palabras: FLUID MECHANICS FLUID MECHANICS, Palabras: MATCHED ASYMPTOTIC EXPANSIONS MATCHED ASYMPTOTIC EXPANSIONS, Palabras: SURFACE TENSION SURFACE TENSION

Resumen
RESUMEN

RESUMEN

 

In this paper, we consider the two-dimensional motion of a viscous, incompressible fluid with a free surface, initially lying inside a wedge. The fluid flows under the action of surface tension, and we analyze its small time motion using the method of matched asymptotic expansions. We show that, in contrast to the case where there is a surrounding fluid with viscosity [M. J. Miksis and J.-M. Vanden-Broeck, Phys. Fluids, 11 (1999), pp. 3227-3231], the initial motion is not self-similar but develops over two asymptotic regions: an inner, nonlinear, surface tension--driven Stokes flow region near the tip of the wedge, and an outer, linear, unsteady Stokes flow region, where inertia is important but surface tension is not. The initial velocity of the tip of the wedge is singular, of $O(\log t)$ as $t \to 0$. We calculate numerical solutions of both the inner and outer problem for a general wedge semiangle, $\alpha$, and also construct asymptotic solutions in the limits $\alpha \to 0$ and $\alpha \to \pi$.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (18.188.223.120)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
18.188.223.120 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 18.188.223.120
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *