Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Autor: =Bonami, Aline
Sólo un registro cumplió la condición especificada en la base de información BIBCYT.
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Bonami, Aline ; Révész, Szilárd Gy.
Título: Integral concentration of idempotent trigonometric polynomials with gaps
Páginas/Colación: pp. 1065-1108
Fecha: August 2009
American Journal of Mathematics Vol. 131, no. 4 August 2009
Información de existenciaInformación de existencia

Palabras Claves: Palabras: POLYNOMIALS POLYNOMIALS

Resumen
We prove that for all p>1/2 there exists a constant γp > 0 such that, for any symmetric measurable set of positive measure E C T and for any γ>γp, there is an idempotent trigonometrical polynomial f satisfying ∫E | f |p > γ ∫T | f |p

We prove that for all p>1/2 there exists a constant γp > 0 such that, for any symmetric measurable set of positive measure E C T and for any γ>γp, there is an idempotent trigonometrical polynomial f satisfying ∫E | f |p > γ ∫T | f |p. This disproves a conjecture of Anderson, Ash, Jones, Rider and Saffari, who proved the existence of γp>0 for p > 1 and conjectured that it does not exists for p = 1.

Furthermore, we prove that one can take γp = 1 when p>1 is not an even integer, and that polynomials f can be chosen with arbitrarily large gaps when p ≠ 2. This shows striking differences with the case p=2, for which the best constant is strictly smaller than 1/2, as it has been known for twenty years, and for which having arbitrarily large gaps with such concentration of the integral is not possible, according to a classical theorem of Wiener.

We find sharper results for 0 < p ≤ 1 when we restrict to open sets, or when we enlarge the class of idempotent trigonometric polynomials to all positive definite ones.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (3.148.106.49)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
3.148.106.49 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 3.148.106.49
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *