Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Autor: =Bouquiaux, Christel
2 registros cumplieron la condición especificada en la base de información BIBCYT. ()
Registro 1 de 2, Base de información BIBCYT
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Beirlant, Jan ; Bouquiaux, Christel ; Werker, Bas J.M.
Título: Semiparametric lower bounds for tail index estimation
Páginas/Colación: p705-729, 25p
Journal of Statistical Planning and Inference v. 136 n° 3 March 2006
Información de existenciaInformación de existencia

Resumen
We consider estimation of the tail index parameter from i.i.d. observations in Pareto and Weibull type models, using a local and asymptotic approach. The slowly varying function describing the non-tail behavior of the distribution is considered as an infinite dimensional nuisance parameter. Without further regularity conditions, we derive a local asymptotic normality (LAN) result for suitably chosen parametric submodels of the full semiparametric model. From this result, we immediately obtain the optimal rate of convergence of tail index parameter estimators for more specific models previously studied. On top of the optimal rate of convergence, our LAN result also gives the minimal limiting variance of estimators (regular for our parametric model) through the convolution theorem. We show that the classical Hill estimator is regular for the submodels introduced with limiting variance equal to the induced convolution theorem bound. We also discuss the Weibull model in this respect.

Registro 2 de 2, Base de información BIBCYT
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Beirlant, Jan ; Bouquiaux, Christel ; Werker, Bas J.M.
Título: Semiparametric lower bounds for tail index estimation
Páginas/Colación: p705-729, 25p
Journal of Statistical Planning and Inference v. 136 n° 3 March 2006
Información de existenciaInformación de existencia

Resumen
We consider estimation of the tail index parameter from i.i.d. observations in Pareto and Weibull type models, using a local and asymptotic approach. The slowly varying function describing the non-tail behavior of the distribution is considered as an infinite dimensional nuisance parameter. Without further regularity conditions, we derive a local asymptotic normality (LAN) result for suitably chosen parametric submodels of the full semiparametric model. From this result, we immediately obtain the optimal rate of convergence of tail index parameter estimators for more specific models previously studied. On top of the optimal rate of convergence, our LAN result also gives the minimal limiting variance of estimators (regular for our parametric model) through the convolution theorem. We show that the classical Hill estimator is regular for the submodels introduced with limiting variance equal to the induced convolution theorem bound. We also discuss the Weibull model in this respect.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (13.58.203.255)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
13.58.203.255 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 13.58.203.255
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *