Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Autor: =Bradley, Currey
Sólo un registro cumplió la condición especificada en la base de información BIBCYT.
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Arnal, Didier ; Bradley, Currey ; Bechir, Dali
Título: Construction of Canonical Coordinates for Expnential Lie Groups
Páginas/Colación: pp. 6283-6348
Fecha: December 2009
Transactions of the American Mathematical Society Vol. 361, no.12 December 2009
Información de existenciaInformación de existencia

Resumen
We study the nonlinear Schrödinger equations:

Given an exponential Lie group $ G$, we show that the constructions of B. Currey, 1992, go through for a less restrictive choice of the Jordan-Hölder basis. Thus we obtain a stratification of $ \mathfrak{g}^*$into $ G$-invariant algebraic subsets, and for each such subset $ \Omega$, an explicit cross-section $ \Sigma \subset \Omega$for coadjoint orbits in $ \Omega$, so that each pair $ (\Omega, \Sigma)$behaves predictably under the associated restriction maps on $ \mathfrak{g}^*$. The cross-section mapping $ \sigma : \Omega \rightarrow \Sigma$is explicitly shown to be real analytic. The associated Vergne polarizations are not necessarily real even in the nilpotent case, and vary rationally with $ \ell \in \Omega$. For each $ \Omega$, algebras $ \mathcal E^0(\Omega)$and $ \mathcal E^1(\Omega)$of polarized and quantizable functions, respectively, are defined in a natural and intrinsic way.

Now let $ 2d > 0$be the dimension of coadjoint orbits in $ \Omega$. An explicit algorithm is given for the construction of complex-valued real analytic functions $ \{q_1,q_2, \dots , q_d\}$and $ \{p_1, p_2, \dots, p_d\}$such that on each coadjoint orbit $ \mathcal{O}$in $ \Omega$, the canonical 2-form is given by $ \sum dp_k \wedge dq_k$. The functions $ \{q_1,q_2, \dots , q_d\}$belong to $ \mathcal E^0(\Omega)$, and the functions $ \{p_1, p_2, \dots, p_d\}$belong to $ \mathcal E^1(\Omega)$. The associated geometric polarization on each orbit $ \mathcal{O}$coincides with the complex Vergne polarization, and a global Darboux chart on $ \mathcal{O}$is obtained in a simple way from the coordinate functions $ (p_1, \dots, p_d,q_1, \dots , q_d)$(restricted to $ \mathcal{O}$). Finally, the linear evaluation functions $ \ell \mapsto \ell(X)$are shown to be quantizable as well

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (3.145.93.227)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
3.145.93.227 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 3.145.93.227
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *