Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Autor: =Braides , Andrea
Sólo un registro cumplió la condición especificada en la base de información BIBCYT.
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Braides , Andrea ; Briane , Marc
Título: Homogenization of Non-Linear Variational Problems with Thin Low-Conducting Layers
Páginas/Colación: pp. 1-30
Applied Mathematics & Optimization: An International Journal with Applcations to Stochastics Vol. 55, no. 1 Jan/Feb. 2007
Información de existenciaInformación de existencia

Palabras Claves: Palabras: CONVERGENCE CONVERGENCE, Palabras: DOUBLE-POROSITY DOUBLE-POROSITY, Palabras: HOMOGENIZATION HOMOGENIZATION, Palabras: NON-LINEAR FUCTIONALS NON-LINEAR FUCTIONALS

Resumen
RESUMEN

RESUMEN

 

This paper deals with the homogenization of a sequence of non-linear conductivity energies in a bounded open set Ω OF Rd, for d ≥ 3. The energy density is of the same order as αε (X / ε) ׀ Du (x) ({x/varepsilon}), | Du(x) | p, where ε→ 0, αε is periodic, u is a vector-valued function in W1,p  (Ω; Rm)   and p > 1. The conductivity αε is equal to 1 in the "hard" phases composed by N ≥ 2 two by two disjoint-closure periodic sets while αε tends uniformly to 0 in the "soft" phases composed by periodic thin layers which separate the hard phases. We prove that the limit energy, according to Γ-convergence, is a multi-phase functional equal to the sum of the homogenized energies (of order 1) induced by the hard phases plus an interaction energy (of order 0) due to the soft phases. The number of limit phases is less than or equal to N and is obtained by evaluating the Γ-limit of the rescaled energy of density ε –p αε (y) | Du(y) | p in the torus. Therefore, the homogenization result is achieved by a double γ-convergence procedure since the cell problem depends on ε.

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (3.142.43.244)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
3.142.43.244 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 3.142.43.244
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *