Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Autor: =Bressloff, Paul C.
2 registros cumplieron la condición especificada en la base de información BIBCYT. ()
Registro 1 de 2, Base de información BIBCYT
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Bressloff, Paul C.
Título: Euclidean Shift-Twist Symmetry in Population Models of Self-Aligning Objects
Páginas/Colación: pp. 1668 -1690
Url: Ir a http://epubs.siam.org/sam-bin/dbq/article/43601http://epubs.siam.org/sam-bin/dbq/article/43601
SIAM Journal on Applied Mathematics Vol. 64, no. 5 June/July 2004
Información de existenciaInformación de existencia

Palabras Claves: Palabras: ACTIN CYTOSKELETON ACTIN CYTOSKELETON, Palabras: ANIMAL AGGREGATION ANIMAL AGGREGATION, Palabras: CELL ALIGNMENT CELL ALIGNMENT, Palabras: EUCLIDEAN SYMMETRY EUCLIDEAN SYMMETRY, Palabras: INTEGRO-DIFFERENTIAL EQUATIONS INTEGRO-DIFFERENTIAL EQUATIONS, Palabras: POPULATION MODELS POPULATION MODELS, Palabras: SELF-ORGANIZATION SELF-ORGANIZATION

Resumen
We consider the symmetry properties of a general class of nonlocal population models describing the aggregation and alignment of oriented objects in two dimensions. Such objects could be at the level of molecules, cells, or whole organisms. We show that the underlying interaction kernel is invariant under the so-called shift-twist action of the Euclidean group acting on the space ${\mathbf R}^2 \times S^1$. This group action was previously studied within the context of a continuum model of primary visual cortex. We use perturbation methods to solve the eigenvalue problem arising from linearization about a homogeneous state, and then use equivariant bifurcation theory to identify the various types of doubly periodic patterns that are expected to arise when the homogeneous state becomes unstable. We thus establish that two distinct forms of spatio-angular order can occur, corresponding to scalar and pseudoscalar representations of the Euclidean group.

Registro 2 de 2, Base de información BIBCYT
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Bressloff, Paul C.
Título: Weakly Interacting Pulses in Synaptically Coupled Neural Media
Páginas/Colación: 57-81 p.
Url: Ir a http://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJMAP000066000001000057000001&idtype=cvips&gifs=Yeshttp://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJMAP000066000001000057000001&idtype=cvips&gifs=Yes
SIAM Journal on Applied Mathematics Vol. 66, no. 1 Oct./Nov. 2005
Información de existenciaInformación de existencia

Palabras Claves: Palabras: INTEGRO-DIFFERENTIAL EQUATIONS INTEGRO-DIFFERENTIAL EQUATIONS, Palabras: LOCALIZED SPIRAL PATTERNS LOCALIZED SPIRAL PATTERNS, Palabras: NEURAL NETWORKS NEURAL NETWORKS, Palabras: TRAVELING PULSES TRAVELING PULSES

Resumen
RESUMEN

RESUMEN

 

We use singular perturbation theory to analyze the dynamics of N weakly interacting pulses in a one-dimensional synaptically coupled neuronal network. The network is modeled in terms of a nonlocal integro-differential equation, in which the integral kernel represents the spatial distribution of synaptic weights, and the output activity of a neuron is taken to be a mean firing rate. We derive a set of N coupled ordinary differential equations (ODEs) for the dynamics of individual pulses, establishing a direct relationship between the explicit form of the pulse interactions and the structure of the long-range synaptic coupling. The system of ODEs is used to explore the existence and stability of stationary N-pulses and traveling wave trains.

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (3.142.250.86)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
3.142.250.86 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 3.142.250.86
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *