Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Autor: =Briane , Marc
2 registros cumplieron la condición especificada en la base de información BIBCYT. ()
Registro 1 de 2, Base de información BIBCYT
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Braides , Andrea ; Briane , Marc
Título: Homogenization of Non-Linear Variational Problems with Thin Low-Conducting Layers
Páginas/Colación: pp. 1-30
Applied Mathematics & Optimization: An International Journal with Applcations to Stochastics Vol. 55, no. 1 Jan/Feb. 2007
Información de existenciaInformación de existencia

Palabras Claves: Palabras: CONVERGENCE CONVERGENCE, Palabras: DOUBLE-POROSITY DOUBLE-POROSITY, Palabras: HOMOGENIZATION HOMOGENIZATION, Palabras: NON-LINEAR FUCTIONALS NON-LINEAR FUCTIONALS

Resumen
RESUMEN

RESUMEN

 

This paper deals with the homogenization of a sequence of non-linear conductivity energies in a bounded open set Ω OF Rd, for d ≥ 3. The energy density is of the same order as αε (X / ε) ׀ Du (x) ({x/varepsilon}), | Du(x) | p, where ε→ 0, αε is periodic, u is a vector-valued function in W1,p  (Ω; Rm)   and p > 1. The conductivity αε is equal to 1 in the "hard" phases composed by N ≥ 2 two by two disjoint-closure periodic sets while αε tends uniformly to 0 in the "soft" phases composed by periodic thin layers which separate the hard phases. We prove that the limit energy, according to Γ-convergence, is a multi-phase functional equal to the sum of the homogenized energies (of order 1) induced by the hard phases plus an interaction energy (of order 0) due to the soft phases. The number of limit phases is less than or equal to N and is obtained by evaluating the Γ-limit of the rescaled energy of density ε –p αε (y) | Du(y) | p in the torus. Therefore, the homogenization result is achieved by a double γ-convergence procedure since the cell problem depends on ε.

 

 

Registro 2 de 2, Base de información BIBCYT
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Braides, Andrea ; Briane , Marc ; Casado-Díaz, Juan
Título: Homogenization of non-uniformly bounded periodic diffusion energies in dimension two
Páginas/Colación: pp. 1459-1480
Fecha: Vol. 22
Url: Ir a http://www.iop.org/EJ/abstract/0951-7715/22/6/010http://www.iop.org/EJ/abstract/0951-7715/22/6/010
Nonlinearity Vol. 22, no. 6 June 2009
Información de existenciaInformación de existencia

Resumen
This paper deals with the homogenization of two-dimensional oscillating convex functionals, the densities of which are equicoercive but not uniformly bounded from above. Using a uniform-convergence result for the minimizers, which holds for this type of scalar problems in dimension two, we prove in particular that the limit energy is local and recover the validity of the analogue of the well-known periodic homogenization formula in this degenerate case. However, in the present context the classical argument leading to integral representation based on the use of cut-off functions is useless due to the unboundedness of the densities. In its place we build sequences with bounded energy, which converge uniformly to piecewise-affine functions, taking point-wise extrema of recovery sequences for affine functions.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (3.149.27.33)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
3.149.27.33 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 3.149.27.33
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *