Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Autor: =Marchev, Dobrin
Sólo un registro cumplió la condición especificada en la base de información BIBCYT.
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Marchev, Dobrin ; Hobert, James P.
Título: Geometric Ergodicity of van Dyk and Meng's Algorithm for the Multivariate Student's t Model
Páginas/Colación: pp. 228 - 238
Url: Ir a http://lysander.asa.catchword.org/vl=988359/cl=33/nw=1/rpsv/cw/asa/01621459/v99n465/s22/p228http://lysander.asa.catchword.org/vl=988359/cl=33/nw=1/rpsv/cw/asa/01621459/v99n465/s22/p228
Journal of the American Statistical Association Vol. 99, no. 465 March 2004
Información de existenciaInformación de existencia

Resumen

 

Let p denote the posterior distribution that results when a random sample of size n from a d-dimensional location-scale Student's t distribution (with ? degrees of freedom) is combined with the standard noninformative prior. van Dyk and Meng developed an efficient Markov chain Monte Carlo (MCMC) algorithm for sampling from p and provided considerable empirical evidence to suggest that their algorithm converges to stationarity much faster than the standard data augmentation algorithm. In addition to its practical importance, this algorithm is interesting from a theoretical standpoint because it is based upon a Markov chain that is not positive recurrent. In this article, we formally analyze the relevant sub-Markov chain underlying van Dyk and Meng's algorithm. In particular, we establish drift and minorization conditions that show that, for many (d, ?, n) triples, the sub-Markov chain is geometrically ergodic. This is the first general, rigorous analysis of an MCMC algorithm based upon a nonpositive recurrent Markov chain. Moreover, our results are important from a practical standpoint because (1) geometric ergodicity guarantees the existence of central limit theorems that can be used to construct Monte Carlo standard errors and (2) the drift and minorization conditions themselves allow for the calculation of exact upper bounds on the total variation distance to stationarity. The results are illustrated using a simple numerical example.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (3.137.198.143)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
3.137.198.143 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 3.137.198.143
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *