Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Autor: =Martin, P. A.
2 registros cumplieron la condición especificada en la base de información BIBCYT. ()
Registro 1 de 2, Base de información BIBCYT
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Martin, P. A.
Título: Acoustic Scattering by Inhomogeneous Obstacles
Páginas/Colación: pp. 297 - 308
Url: Ir a http://epubs.siam.org/sam-bin/dbq/article/41437http://epubs.siam.org/sam-bin/dbq/article/41437
SIAM Journal on Applied Mathematics Vol. 64, no. 1 Oct./Dec. 2003
Información de existenciaInformación de existencia

Resumen
Flow and transport phenomena occurring within serpentine microchannels are analyzed for both two- and three-dimensional curvilinear configurations

 

Acoustic scattering problems are considered when the material parameters (density and speed of sound) are functions of position within a bounded region. An integro-differential equation for the pressure in this region is obtained. It is proved that solving this equation is equivalent to solving the scattering problem. Problems of this kind are often solved by regarding the effects of the inhomogeneity as an unknown source term driving a Helmholtz equation, leading to an equation of Lippmann--Schwinger type. It is shown that this approach is incomplete when the density is discontinuous. Analogous scattering problems for elastic waves and for electromagnetic waves are also discussed briefly.

Registro 2 de 2, Base de información BIBCYT
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Linton, C. M. ; Martin, P. A.
Título: Semi-Infinite Arrays of Isotropic Point Scatterers. A Unified Approach
Páginas/Colación: pp. 1035-1056
Url: Ir a http://epubs.siam.org/sam-bin/dbq/article/42789http://epubs.siam.org/sam-bin/dbq/article/42789
SIAM Journal on Applied Mathematics Vol. 64, no. 3 March/April 2004
Información de existenciaInformación de existencia

Resumen
We solve the two-dimensional problem of acoustic scattering by a semi-infinite periodic array of identical isotropic point scatterers, i.e., objects whose size is negligible compared to the incident wavelength and which are assumed to scatter incident waves uniformly in all directions. This model is appropriate for scatterers on which Dirichlet boundary conditions are applied in the limit as the ratio of wavelength to body size tends to infinity. The problem is also relevant to the scattering of an E-polarized electromagnetic wave by an array of highly conducting wires. The actual geometry of each scatterer is characterized by a single parameter in the equations, related to the single-body scattering problem and determined from a harmonic boundary-value problem. Using a mixture of analytical and numerical techniques, we confirm that a number of phenomena reported for specific geometries are in fact present in the general case (such as the presence of shadow boundaries in the far field and the vanishing of the circular wave scattered by the end of the array in certain specific directions). We show that the semi-infinite array problem is equivalent to that of inverting an infinite Toeplitz matrix, which in turn can be formulated as a discrete Wiener--Hopf problem. Numerical results are presented which compare the amplitude of the wave diffracted by the end of the array for scatterers having different shapes. Key words. scattering, semi-infinite array, Foldy's method, discrete Wiener--Hopf

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (3.22.249.229)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
3.22.249.229 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 3.22.249.229
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *