Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Autor: =Matkowsky, B. J.
Sólo un registro cumplió la condición especificada en la base de información BIBCYT.
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Park, J. H. ; Bayliss, A. ; Matkowsky, B. J. ; Nepomnyashchy, A. A.
Título: On the Route to Extinction in Nonadiabatic Solid Flames
Páginas/Colación: 873-895 p.
Url: Ir a http://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJMAP000066000003000873000001&idtype=cvips&gifs=Yeshttp://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJMAP000066000003000873000001&idtype=cvips&gifs=Yes
SIAM Journal on Applied Mathematics Vol. 66, no. 3 Febr./March 2006
Información de existenciaInformación de existencia

Palabras Claves: Palabras: CHAOS CHAOS, Palabras: NONADIABATIC COMBUSTION WAVE DYNAMICS NONADIABATIC COMBUSTION WAVE DYNAMICS, Palabras: PERIOD DOUBLING SEQUENCE PERIOD DOUBLING SEQUENCE, Palabras: SOLID FLAME SOLID FLAME

Resumen
RESUMEN

RESUMEN

 

We consider nonadiabatic gasless solid fuel combustion employing a reaction sheet model. We derive an integrodifferential equation for the location of the interface separating the fresh fuel from the burned products. There are two parameters in our model, the Zeldovich number $Z$, related to the activation energy of the exothermic chemical reaction, and the heat loss parameter $\Gamma$. For any value of $Z$ there is an extinction limit $\Gamma_{m}$, so that if $\Gamma > \Gamma_{m}$, the combustion wave cannot be sustained. For all values of $Z$ and $\Gamma < \Gamma_{m}$ the model admits a uniformly propagating combustion wave. This solution is subject to a pulsating instability for $Z$ sufficiently large. The effect of heat losses is destabilizing in the sense that pulsations occur for smaller values of $Z$ when heat loss is considered.We consider the dynamics of the combustion wave as $\Gamma$ increases, thus, describing the dynamics of the model on the route to extinction. We consider values of $Z$ below the adiabatic stability limit, so that for $\Gamma=0$ the only stable steady state solution is the uniformly propagating combustion wave. We find that for $Z$ near the adiabatic stability limit, the effect of heat loss is to promote a period doubling cascade leading to chaotic behavior prior to extinction. We also find an interval of laminar behavior within the chaotic window, corresponding to a secondary period doubling sequence. Specifically, we find solutions of period $12T, 24T, 48T$. We show that for smaller values of $Z$ the full period doubled sequence does not necessarily occur. Rather, extinction follows after a finite, possibly small, number of periodic solutions.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (3.133.108.172)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
3.133.108.172 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 3.133.108.172
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *