Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Autor: =Matsumoto, Sho
Sólo un registro cumplió la condición especificada en la base de información BIBCYT.
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Kimoto, Kazufumi ; Kimoto, Kazufumi ; Matsumoto, Sho ; Wakayama, Masato
Título: Alpha-Determinant Cyclic Modules and Jacobi Polynomials
Páginas/Colación: pp. 6447-6473
Fecha: December 2009
Transactions of the American Mathematical Society Vol. 361, no.12 December 2009
Información de existenciaInformación de existencia

Palabras Claves: Palabras: ALPHA-DETERMINANT ALPHA-DETERMINANT, Palabras: CYCLIC MODULES CYCLIC MODULES, Palabras: IRREDUCIBLE DECOMPOSITION IRREDUCIBLE DECOMPOSITION, Palabras: JACOBI POLYNOMIALS JACOBI POLYNOMIALS, Palabras: KOSTKA NUMBERS KOSTKA NUMBERS, Palabras: PERMANENT PERMANENT, Palabras: SINGLY CONFLUENT HEUN ODE SINGLY CONFLUENT HEUN ODE, Palabras: SPHERICAL FOURIER SPHERICAL FOURIER, Palabras: TRANSFORMATION TRANSFORMATION, Palabras: ZONAL SPHERICAL FUNCTIONS ZONAL SPHERICAL FUNCTIONS

Resumen
html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns="http://www.w3.org/TR/REC-html40"> We study the nonlinear Schrödinger equations:

For positive integers $ n$and $ l$, we study the cyclic $ \mathcal{U}(\mathfrak{gl}_n)$-module generated by the $ l$-th power of the $ \alpha$-determinant $ \det^{(\alpha)}(X)$. This cyclic module is isomorphic to the $ n$-th tensor space $ \mathcal{S}^l(\mathbb{C}^n)^{\otimes n}$of the symmetric $ l$-th tensor space of $ \mathbb{C}^n$for all but finitely many exceptional values of $ \alpha$. If $ \alpha$is exceptional, then the cyclic module is equivalent to a proper submodule of $ \mathcal{S}^l(\mathbb{C}^n)^{\otimes n}$, i.e. the multiplicities of several irreducible subrepresentations in the cyclic module are smaller than those in $ \mathcal{S}^l(\mathbb{C}^n)^{\otimes n}$. The degeneration of each isotypic component of the cyclic module is described by a matrix whose size is given by a Kostka number and whose entries are polynomials in $ \alpha$with rational coefficients. In particular, we determine the matrix completely when $ n=2$. In this case, the matrix becomes a scalar and is essentially given by a classical Jacobi polynomial. Moreover, we prove that these polynomials are unitary.

In the Appendix, we consider a variation of the spherical Fourier transformation for $ (\mathfrak{S}_{nl},\mathfrak{S}_l^n)$as a main tool for analyzing the same problems, and describe the case where $ n=2$by using the zonal spherical functions of the Gelfand pair $ (\mathfrak{S}_{2l},\mathfrak{S}_l^2)$.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (52.14.166.224)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
52.14.166.224 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 52.14.166.224
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *