Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Autor: =Mikula, Karol
Sólo un registro cumplió la condición especificada en la base de información BIBCYT.
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Drblíková, Olga ; Mikula, Karol
Título: Convergence analysis of finite volume scheme for nonlinear tensor anisotropic diffusion in image processing
Páginas/Colación: pp. 37-60
Fecha: Volume 46, Issue 1
Url: Ir a http://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SJNAAM000046000001000037000001&idtype=cvips&gifs=Yeshttp://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SJNAAM000046000001000037000001&idtype=cvips&gifs=Yes
Siam Journal on Numerical Analysis Vol. 44, no. 1 February.2007
Información de existenciaInformación de existencia

Resumen
RESUMEN

RESUMEN

 

In this article we design the semiimplicit finite volume scheme for coherence enhancing diffusion in image processing and prove its convergence to the weak solution of the problem. The finite volume methods are natural tools for image processing applications since they use piecewise constant representation of approximate solutions similarly to the structure of digital images. They have been successfully applied in image processing, e.g., for solving the PeronaMalik equation or curvature-driven level set equations, where the nonlinearities are represented by a scalar function dependent on a solution gradient. Design of suitable finite volume schemes for tensor diffusion is a nontrivial task here we present the first such scheme with a convergence proof for the practical nonlinear model used in coherence-enhancing image smoothing. We provide basic information about this type of nonlinear diffusion including a construction of its diffusion tensor, and we derive a semiimplicit finite volume scheme for this nonlinear model with the help of covolume mesh. This method is well known as the diamond-cell method owing to the choice of covolume as a diamond-shaped polygon. Further, we prove a convergence of a discrete solution given by our scheme to the weak solution of the problem. The proof is based on Kolmogorovs compactness theorem and a bounding of a gradient in the tangential direction by using a gradient in the normal direction. Finally computational results illustrated in figures are discussed.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (18.224.52.108)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
18.224.52.108 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 18.224.52.108
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *