Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Autor: =Mojirsheibani, Majid
Sólo un registro cumplió la condición especificada en la base de información BIBCYT.
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Mojirsheibani, Majid
Título: Nonparametric curve estimation with missing data: A general empirical process approach
Páginas/Colación: p2733-2758
Journal of Statistical Planning and Inference Vol. 137, no. 9 September 2007
Información de existenciaInformación de existencia

Resumen
A general nonparametric imputation procedure, based on kernel regression, is proposed to estimate points as well as set- and function-indexed parameters when the data are missing at random (MAR). The proposed method works by imputing a specific function of a missing value (and not the missing value itself), where the form of this specific function is dictated by the parameter of interest. Both single and multiple imputations are considered. The associated empirical processes provide the right tool to study the uniform convergence properties of the resulting estimators. Our estimators include, as special cases, the imputation estimator of the mean, the estimator of the distribution function proposed by Cheng and Chu [1996. Kernel estimation of distribution functions and quantiles with missing data. Statist. Sinica 6, 63–78], imputation estimators of a marginal density, and imputation estimators of regression functions.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (3.144.31.86)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
3.144.31.86 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 3.144.31.86
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *