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1. INTRODUCTION

The theory of quasisemigroups of bounded linear operators was introduced in 1991 [1] as a generalization
of strongly continuous semigroups of bounded linear operators. This notion with its elementary properties
and some applications in abstract evolution equations are studied in [2, 6, 7, 8]. The dual quasisemigroups
and the controllability of evolution equations are also discussed in [3].

Given a Banach space Z, we denote with L(Z) the space of all bounded linear operators from Z to Z.
A bi-parametric family of bounded linear operators {K(t, s)}t, s ≥ 0 ⊂ L(Z) is called commutative if it satisfies:

K(r, t + s) = K(r + t, s) K(r, t) = K(r, t) K(r + t, s).

A commutative family {K(t, s)}t,s ≥ 0 is called strongly continuous quasisemigroups if it satisfies:

(i) K(t, 0) = I (t ≥ 0) (I is the identity operator in L(Z)).

(ii) K(r, t + s) = K(r + t, s) K(r, t) (r, s, t ≥ 0).

(iii)
0 0

0 0 0 0( , ) ( , )
lim || ( , ) ( , ) ||

t s t s
K t s z K t s z

→
−  = 0 (z0 ∈ Z).

(iv) There exists a continuous and increasing function M : [0, ∞) → [1, ∞) such that ||K (t, s)|| ≤ M(t + s) for
every.

We also introduce the notion of a generator A(t) of strongly continuous quasisemigroups. These two
notions generalize those of strongly continuous semigroups and infinitesimal generators. See [2].

Regularized semigroups and their connection with abstract Cauchy problems are introduced in [10],
and have been studied in several articles, including [11, 15, 16, 17, 18]. This notion states the following:
If C ∈ L(Z) is an injective operator, then a one-parameter family of bounded linear operators {T(t)}t ≥ 0 ⊆ L(Z)
is called a C-semigroup if it satisfies the following properties:

1. T(t) is strongly continuous, i.e, for each fixed x ∈ Z, t → T(t)x is continuous.

2. T(t + s)C = T(t)T(s), ,s t∀ ≥ 0
3. T(0) = C.
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The linear operators A defined by

D(A) = 1

0

( )
: lim exists and lies in ( )

t

T t Cx
x Z C R C

t+

−

→

− ∈ 
 

and A(t) = 1

0

( )
lim
t

T t x Cx
C

t+

−

→

−
 for x ∈ D(A)

is the infinitesimal generator of the C-semigroup T(t) where D(A) is the domin of A.

The notion of regularized quasisemigroups of linear operators is introduced in [12], as an extension
of the definition of C-Semigroup given above. Such notion is given as follows: Suppose C is an injective
bounded linear operator on Banach space Z. A commutative bi-parametric family of bounded linear
operators {K(t, s)}s, t ≥ 0 ⊂ L(Z) is called a regularized quasisemigroups (or C-quasisemigroups) if it satisfises,

(i) K(t, 0) = C (t ≥ 0).

(ii) CK(r, t + s) = K (r + t, s) K(r, t) (r, s, t = 0).

(iii)
0 0

0 0 0 0( , ) ( , )
lim || ( , ) ( , ) ||

t s t s
K t s z K t s z

→
−  = 0 0( )z Z∈ That is, {K(t, s)}t, s ≥ 0, is strongly continuous.

(iv) There exists a continuous and increasing function M : [0, ∞) → [1, ∞) such that ||K(t, s)|| ≤ M(t + s)
for every s, t ≥ 0.

Let K(t, s) be a C-quasisemigroup and let D be the dense subspace of Banach space Z, such that for all
z0 ∈ D there exist the limits in the range of C:

0 0

0

( , )
lim
s

K t s z Cz
s+→

−
 = 0 0

0

( , , )
lim , 0,
s

K t s s z Cz
t

s+→

− − > 0 0

0

(0, )
lim
s

K s z Cz
s→

−

The family of operators A(t), t = 0, with common domain D, defined by

A(t)x0 =
1 0 0

0
0

( , )
lim ( ),
s

K t s z Cz
C z D

s+

−

→

− ∈

is called the generator of the regularized quasisemigroup K(t, s).

In order to motivate our work, we observe that given a quasisemigroup, one may (according to
definition 2.3) associate to it an evolution operator defined by

U(t, s) = K(t, t – s),

but not the other way around since in general an evolution operator U(t, s) is not a commutative family.
This observation and the foregoing theory of regularized quasisemigroups allows as to introduce and
study the notion of regularized evolution operators, and we generalize Lemma 3.1 from [5].

Finally, as an application, we will be interested in the abstract Cauchy problem defined on a Banach
space Z,

2

2
0

( ) ( ) ( ) ( ), 0

( ) ,

z t A t z t C f t s t

z s C z Z

 ′ = + ≤ ≤ < ∞


= ∈
(1.1)

where z : [0, ∞) → Z, A(t) is a family of unbounded linear operators in Z with domain D(A(t)) = D,
independent of t, such that A(⋅)z ∈ C ( +, Z) for each z ∈¸ D, f : [0, T] → Z is suitable function and C is an
injective linear operator in Z.



Regularized Evolution Operators and Applications 35

As an example of this problem we study the following system of reaction diffusion equations:

2

2

( , )
, ) ( ) ( , ) ( , ), 0, ,

( , )
0, 0, , ,

(0, ) ( ),

nu t x
D t x B t u t x C f t x t u

t
u t x

t x

u x C x x

∂ = ∆( + + > ∈ ∂
∂ = > ∈� ∂Ω ∂η

 = ∈Ω,



(1.2)

where Ω is a bounded domain in N (N ≥ 1), α, ∈ L2 (∈), with α(x) > 0, x∀ ∈Ω and D is an n × n

matrix whose eigenvalues are semisimple with non negative real part or strictly positive and f :  × Ω → n

is a smooth function. We assume that the operator [0, ( ))B P Z∞∈ ∞);Γ :

{ }1 2 1 2 ( )
0

/ , ( ) is measurable , and (ess sup ) || ( ) || z
t

B z B z z z Z B t Γ
≤ <∞

⋅ ∀ ∈ < ∞

with Z = L2 (Ω) and C : L2(Ω) → L2(Ω) is the linear operator given by (C )(x) = α(x) (x).

2. EVOLUTION OPERATORS

In this section we are interested in the classical abstract Cauchy problem defined on a Banach space Z,

0

( ) ( ) ( ), 0

( ) ,

z t A t z t s t

z s z Z

′ = ≤ ≤ < ∞
 = ∈

(2.1)

where z : [0, ∞) → Z, A(t) is a family of unbounded linear operators in Z with domain D(A(t)) = D,
independent of t, such that A(⋅)z ∈ ( +, Z) for each z ∈¸ D.

Definition 2.1: (see [14]) An operator-valued function U(t, s) ∈¸ (Z) which is strongly continuous
jointly in t, s for 0 ≤ s ≤ t < ∞, is called fundamental solution of (2.1) if

1. For all z ∈¸ D the partial derivative
( , )U t s z

t
∂

∂
 exists in the strong topology of Z and it is strongly

continuous in (t, s) for 0 ≤ s ≤ t < ∞.

2. For all z ∈¸ D, U(t, s)z ∈ D.

3. For all z ∈¸ D, =
( , )U t s z

t
∂

∂
A(t) U(t, s)z, 0 ≤ s ≤ t < ∞ and U(s, s) = I.

Proposition 2.2: The operator-valued function U(t, s) given by the foregoing definition satisfies the
following properties:

U(t, s)z0 = 00 ( ) ( , ) , 0 ,
t

s z ds
z A U z D+ ∀ ∈∫ (2.2)

0 0
( , ) ( , ) ( , )

lim lim z z

r t k t

U r k U k s U k s

r k+ −→ →

−
−

= 0 0
( , ) ( , ) ( , )

lim lim z z

k t r t

U r k U k s U k s

r k− +→ →

−
−

(2.3)

The above calculation motivates the following definitions.

Definition 2.3: A two-parameter family of bounded linear operators U(t, s) ∈ (Z), 0 ≤ s ≤ t < ∞ see [9]
is called an evolution operator if the following conditions are satisfied:

1. U(s, s) = I and U(t, r) U(r, s) = U(t, s) for 0 ≤ s ≤ t < ∞.
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2. (t, s) → U(t, s) is strongly continuous for 0 ≤ s ≤ t < ∞.

3. There exists a real valued continuous nonnegative function g(t, s) with ||U(t, s)|| ≤ g(t, s) for all
0  ≤ s ≤ t < ∞.

Proposition 2.4: Given a quasisemigroups K(t, s) the evolution operator defined by

U(t, s)z0 = K(t, t – s)z0, ∀ z0 ∈ D, t ≥ s

satisfies:

0 0
( , ) ( , ) ( , )

lim lim z z

r t k t

U r k U k s U k s

r k+ −→ →

−
−

 = 0 0
( , ) ( , ) ( , )

lim lim z z

k t r t

U r k U k s U k s

r k− +→ →

−
−

Proof: In fact,

0 0
( , ) ( , ) ( , )

lim lim z z

r t k t

U r k U k s U k s

r k+ −→ →

−
−

 = 0 0
( , ) ( , ) ( , )

lim lim z z

r t k t

K r r k K k k s K k k s

r k+ −→ →

− − − −
−

= 0 0( ( , ) )
lim lim ( , )
r t k t

K r r k z z
K t t s

r k+ −→ →

− −−
−

 = 0 0( ( , ) )
lim ( , )
r t

K r r t z z
K t t s

r t+→

− −−
−

= 0 0

0

( ( , ) )
lim ( , )
h

K t h h z z
K t t s

h+→

+ −−  = K(t, t – s) A(t)z0 = U(t, s) A(t)z0,

and

0 0( , ) ( , ) ( , )
lim lim
k t r t

U r k U k s z U k s z
r k− +→ →

−
−

= 0 0( , ) ( , ) ( , )
lim lim
k t r t

K r r k K k k s z K k k s z

r k− +→ →

− − − −
−

= 0 0( ( , ) )
lim lim ( , )
k t r t

K r r k z z
K k k s

r k− +→ →

− −−
−

 = 0 0( ( , ) )
lim ( , )
k t

K t t k z z
K k k s

t k−→

− −−
−

= 0 0

0

( ( , ) )
lim ( , )
h

K t h z z
K t h t h s

h+→

−− − − = K(t, t – s) A(t) = U (t, s) A(t) z0.

Motivated by Propositions 2.2 and 2.4 we define the following important subspace:

Definition 2.5: We define the subspace D consisting of all z ∈ Z such that the following limits

( , ) ( , ) ( , )
lim lim
r t k t

U r k U k s z U k s z
r k+ −→ →

−
−

 =
( , ) ( , ) ( , )

lim lim
k t r t

U r k U k s z U k s z
r k− +→ →

−
−

exist for all 0 ≤ s ≤ t < ∞.

Remark 2.6: For all z ∈ D and t ≥ 0 the following limits exists

0

( , )
lim
h

U t h t z z
h+→

+ −
 =

( , )
lim
r t

U r t z z
r t+→

−
−

In fact, since z belongs to D we have the existence of the limits

( , ) ( , ) ( , )
lim lim
r t k t

U r k U k s z U k s z
r k+ −→ →

−
−

 =
( , ) ( , ) ( , )

lim lim
k t r t

U r k U k s z U k s z
r k− +→ →

−
−

for all 0 ≤ s ≤ t < ∞. Then if we put s = t and make a change of variable, we get

0

( , )
lim
h

U t h t z z
h+→

+ −
 =

( , )
lim
r t

U r t z z
r t+→

−
−

Now, we shall give a definition of generator of an evolution operator, which is similar to the one
given in [13] pg 1902.
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Definition 2.7: The generator A(t) of an evolution operator U(t, s), 0 ≤ s ≤ t < ∞ is defined as follows:

A(t)z =
0

( , )
lim , , 0
h

U t h t z z
z D t

h+→

+ − ∀ ∈ ≤ < ∞ .

Thus, we get that D(A(t)) = D.

3. REGULARIZED EVOLUTION OPERATORS

In this section we are interested in the generalized abstract Cauchy problem defined on a Banach space Z,

2
0

( ) ( ) ( ),0

( ) ,

z t A t z t s t

z s C z Z

′ = ≤ ≤ < ∞
 = ∈

(3.1)

where z : [0, ∞) → Z, A(t) is a family of unbounded linear operators in Z with domain D(A(t)) = D,

independent of t, such that A(⋅)z ∈¸ C ( + , Z) for each z ∈¸ D and C is a bounded linear operator in Z.

Definition 3.1: Suppose C is an injective bounded linear operator on the Banach space Z. A

two-parameter family of bounded linear operators U(t, s) ∈ ( )Z , 0 ≤ s ≤ t < ∞, is called regularized evolution
operator (or C-Evolution Operator) if the following conditions are satisfied:

1. U(s, s) = C and CU(t, s) = U(t, r) U(r, s) for 0 ≤ s ≤ t < ∞.

2. (t, s) → U(t, s) is strongly continuous for 0 ≤ s ≤ t < ∞.

3. There exists a real valued continuous nonnegative function g(t, s) with ||U(t, s) ≤ g(t, s) for all
0 ≤ s ≤ t < ∞.

Definition 3.2: We define the subspace D consisting of all z ∈ Z such that the following limits

( , ) ( , ) ( , )
lim lim
r t k t

U r k U k s z CU k s z
r k+ −→ →

−
−

 =
( , ) ( , ) ( , )

lim lim
k t r t

U r k U k s z CU k s z
r k− +→ →

−
−

exist for all 0 ≤ s ≤ t < ∞.

Remark 3.3: For all z ∈ D and we have the existence of this limits

0

( , )
lim
h

U t h t z Cz
h+→

+ −
 =

( , )
lim
h t

U r t z Cz
r t+→

−
−

In fact, since z belongs to D we have the existence of the limits

( , ) ( , ) ( , )
lim lim
k t k t

U r k U k s z CU k s z
r k+ −→ →

−
−

 =
( , ) ( , ) ( , )

lim lim
k t k t

U r k U k s z CU k s z
r k− +→ →

−
−

Then, if we put s = t and make a change of variable, we get

0

( , )
lim
h

U t h t z Cz
h+→

+ −
 =

( , )
lim
r t

U r t z Cz
r t+→

−
−

Definition 3.4: The generator A(t) of a regularized evolution operator U(t, s), 0 ≤ s ≤ t < ∞ is defined
as follows:

A(t)z = 1

0

( , )
lim , , 0
h

U t h t z Cz
C z D t

h+

−

→

+ − ∀ ∈ ≤ < ∞.

So, we get that D(A(t)) = D.
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Lemma 3.5: Let U(t, s), 0 ≤ s ≤ t < ∞ be a regularized evolution operator on Z and C is an injective
bounded linear operator on Banach space Z, such that, U(t, s) Cz,C–1 U(t, s) z ∈ D for all z ∈ D, furthermore
CU(t, s) = U(t, s)C and C–1 U(t, s) = U(t, s) C–1. Then for all z ∈ D we have that

( , )U t s Cz
t

∂
∂

 = A(t)U(t, s) Cz

and ( , )U t s Cz
s

∂
∂

 = –A(s) U(t, s) Cz.

1 ( , )C U t s z
t

−∂
∂

 = C–1 A(t) U(t, s)z

and 1 ( , )C U t s z
s

−∂
∂

= –C–1 A(s) U(t, s)z

Proof: If z ∈ D, the from the hypothesis we have that U(t, s)Cz, C–1 U(t, s) z ∈ D,

0

( , ) ( , )
lim
h

U t h s Cz U t s Cz
h+→

+ −
 =

1

0

( , ) ( , )
lim
h

C CU t h s Cz U t s Cz
h+

−

→

+ −

= 1

0

( , ) ( , ) ( , )
lim
h

u t h t U t s Cz CU t s Cz
C

h+

−

→

+ −

Since U(t, s) Cz ∈ D, we obtain that

0

( , ) ( , ) ( , )
lim
h

U t h t U t s Cz U t s Cz
h+→

+ −
 = ( ) ( , ) .A t U t s Cz

Now, suppose t > s and h ≥ 0 is small enough such that t – h ≥ s. Then

0

( , ) ( , )
lim
h

U t h s Cz U t s Cz
h+→

− −
−

 =
0

( , ) ( , )
lim
h

U t s Cz U t h s Cz
h+→

− −

=
1

0

( , ) ( , )
lim
h

C CU t s Cz U t h s Cz
h+

−

→

− −

=
1

0

( , ) ( , ) ( , )
lim
h

C U t t h U t h s Cz U t h s Cz
h+

−

→

− − − −

=
1 ( , ) ( , ) ( , )

lim
k t

C U t k U k s Cz U k s Cz
t k−

−

→

−
−

=
1 ( , ) ( , ) ( , )

lim lim
r t k t

C U r k U k s Cz U k s Cz
r k+ −

−

→ →

−
−

=
1 ( , ) ( , ) ( , )

lim
r t

C U r t U t s Cz U t s Cz
r t+

−

→

−
−

= 1

0

( , ) ( , ) ( , )
lim
h

U t h t U t s Cz CU t s Cz
C

h+

−

→

+ −

= A(t) U(t, s) Cz.



Regularized Evolution Operators and Applications 39

So, ( , )U t s Cz
t

∂
∂

 = A(t) U(t, s) Cz for 0 ≤ s < t < ∞.

Again, suppose that t > s and h ≥ 0 is small enough such that s + h < t. Then

1
1( , ) ( , ) ( , ) ( , )

( , ) ( ) ( , ) ( )
U t s h Cz U t s Cz C CU t s Cz U t s h Cz

U t s A s Cz C CU t s A s Cz
h h

−
− + − − ++ = − −  

=
1

1( , ) ( , ) ( , )
( , ) ( , ) ( )

C U t s h U s h s Cz U t s h Cz
C U t s h U s h s A s Cz

h

−
− + + − +− − + +  

= 1 1( , ) ( )
( , ) ( , ) ( )

U s h s Cz C Cz
U t s h C C U s h s A s Cz

h
− −+ − − + − +  

≤ 1 1( , ) ( )
( , ) ( , ) ( )

U s h s Cz C Cz
g t s h C C U s h s A s Cz

h
− −+ − + ⋅ − +  

Since 1

0

( , ) ( )
lim
h

U s h s Cz C Cz
C

h+

−

→

+ −  = A(S) Cz, and

1

0
lim ( , ) ( )
h

C U s h s A s Cz
+

−

→
+  = 1 ( ) ( ) ,C CA s Cz A s Cz− =

we obtain that

0

( , ) ( , )
lim
h

U t s h Cz U t s Cz
h+→

+ −
 = –U(t, s) A(s) Cz.

Similarly,

( , ) ( , )U t s h Cz U t s Cz
h

− −
−

 =
( , ) ( , )U t s Cz U t s h Cz

h
− −

=
1( , ) ( , )U t s Cz C CU t s h Cz
h

−− −

=
1( , ) ( , ) ( , )U t s Cz C U t s U s s h Cz

h

−− −

= 1 ( , ) ( , ) ( , )U t s U s s h Cz CU t s Cz
C

h
− − −− ⋅

= 1 ( , ) ( )
( , )

U s s h Cz C Cz
C U t s

h
− − − − ⋅   

We also have

0

( , ) ( , )
lim
h

U t s h Cz U t s Cz
h+→

− −
−

 = 1

0

( , ) ( )
( , ) lim

h

U s s h Cz C Cz
U t s C

h+

−

→

− − − ⋅   

= –U(t, s) A(s)z.

so that
( , )

( , ) ( )
U t s Cz

U t s A s Cz
s

∂ = −
∂

 for 0 ≤ s < t < ∞ Now,
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1 1

0

( , ) ( , )
lim
h

C U t h s z C U t s z
h+

− −

→

+ −
 =

1 1 1

0

( , ) ( , )
lim
h

C C CU t h s z C U t s z
h+

− − −

→

+ −

=
1

1

0

( , ) ( , ) ( , )
lim
h

C U t h t U t s z U t s z
C

h+

−
−

→

+ −⋅

= 1 1

0

( , ) ( , ) ( , )
lim
x

U t h t U t s z CU t s z
C C

h+

− −

→

+ − ⋅  

= 1 ( ) ( , ) .C A t U t s z−

Now, suppose t > s and h ≥ 0 is small enough such that t – h ≥ s. Then

1 1

0

( , ) ( , )
lim
h

C U t h s z C U t s z
h+

− −

→

− −
−

 =
1

1

0

( , ) ( , )
lim
h

C CU t s z U t h s z
C

h+

−
−

→

− −⋅

= 1 1

0

( , ) ( , ) ( , )
lim
h

U t t h U t h s z CU t s s z
C C

h+

− −

→

− − − − ⋅  

= 1 1 ( , ) ( , ) ( , )
lim
k t

U t k U k s z CU k s z
C C

r k−

− −

→

− 
 − 

= 1 1 ( , ) ( , ) ( , )
lim lim
k t r t

U r k U k s z CU k s z
C C

r k− +

− −

→ →

− 
 − 

= 1 1 ( , ) ( , ) ( , )
lim lim
r t k t

U r k U k s z CU k s z
C C

r k+ −

− −

→ →

− 
 − 

= 1 1 ( , ) ( , ) ( , )
lim
r t

U r t U t s z CU t s z
C C

r t+

− −

→

− 
 − 

= 1 1

0

( , ) ( , ) ( , )
lim
h

U t h t U t s z CU t s z
C C

h+

− −

→

+ − 
  

= 1 ( ) ( , ) .C A t U t s z−

So,

1 1

0

( , ) ( , )
lim
h

C U t h s z C U t s z
h+

− −

→

− −
−

 = 1 ( ) ( , ) .C A t U t s z−

Therefore, 1 ( , )C U t s
t

−∂
∂

 = 1 ( ) ( , ) .C A t U t s z−

Analogously

1 1( , ) ( , )C U t s h z C U t s z
h

− −− −
−

 =
1

1 ( , ) ( , ) ( , )U t s z C U t s U t s h z
C

h

−
−  − −

  

=
1

1 ( , ) ( , ) ( , )C U t s U s s h z U t s z
C

h

−
−  − −−   

= 1 1 ( , )
( , ) .

U s s h z Cz
C C U t s

h
− − − − −     
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We also have 1

0

( , )
lim ( , ) ( ) .
h

U s s h z C z
C U t s A s z

h+

−

→

− −  =    And we obtain

1 1

0

( , ) ( , )
lim
h

C U t s h z C U t s z
h+

− −

→

− −
−

 = 1 ( , ) ( ) .C U t s A s z−−

Again, suppose that t > s and h ≥ 0 is small enough such that s + h < t. Then

1 1
1( , ) ( , )

( , ) ( )
C U t s h z C U t s z

C U t s A s z
h

− −
−+ − +

=
1

1 1( , ) ( , ) ( , )
( , ) ( , ) ( )

U t s h z C U t s h U s s h z
C C U t s h U s h s A s Cz

h

−
− − + − + + + + +  

=
1

1 1( , )
{ ( , ) ( , ) ( )

C U s h s z z
C U t s h C U s h s A s z

h

−
− − + −− + − +  

≤
1

1 1( , )
|| || || ( , ) || ( , ) ( )

C U s s h z z
C U t s h C U s h s A s Cz

h

−
− −+ −+ − +

≤ 
1

1( , )
( , ) ( , ) ( )

C U s s h z z
Mg t s h C U s h s A s z

h

−
−+ −+ − +

= 1 1( , )
( , ) ( , ) ( ) .

U s s h z Cz
Mg t s h C C U s h s A s z

h
− −+ − + − +  

Since

1

0

( , )
lim
h

U s s h z Cz
C

h+

−

→

+ −
 = A(s) and 1

0
lim ( , ) ( )
h

C U s h s A s z
+

−

→
+

we obtain

1 1

0

( , ) ( , )
lim
h

C U t s h z C U t s z
h+

− −

→

+ −
= 1 ( , ) ( ) .C U t s A s z−−

Therefore 1 ( , )C U t s z
s

−∂
∂

= 1 ( ) ( , ) .C A s U t s z−−

Proposition 3.6: The C-evolution operator U(t, s) given by the foregoing definition satisfies the
following properties:

U(t, s)z0 = 00 ( ) ( , ) , 0 .
t

S z ds
Cz A U z D+ ∀ ∈∫ (3.2)

Theorem 3.7: Let U(t, s), 0 = s = t < ∞ be a regularized evolution operator on Z satisfying the
condition Lemma 3.5 and C is an injective bounded linear operator on Banach space Z and let A(t) its
generator with domain D. Then the Cauchy problem

2
0 0

( ) ( ) ( ) ,

( ) , .

z t A t z t t s

z s C z z Z

′ = ≥
 = ∈

(3.3)

has the unique solution the function

z(t) = U(t, s)Cz0.
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Proof: From Lemma 3.5 we get that z(t) = U(t, s)Cz0 is one solution of the Cauchy problem (3.3).
Now, to prove uniqueness, we will suppose that y(t) is another solution of the problem, then w(t) = z(t) – y(t)
satisfies the differential equation

dw
dt

 = A(t)w(t), t ≥ s; w(s) = 0

and so we need to show that w(t) ≡ 0. For this, let us define F(u) = U(t, u) Cw(u), 0 ≤ u = s < t. Then

F′(u) = ( , ) ( ) ( , ) ( )
d

U t u Cw u U t u C w u
u du
∂ +
∂

= ( ) ( , ) ( ) ( , ) ( ) ( )A u U t u C w u U t u C A u w u− +

= 0.

Therefore, F(u) = U(t, u) Cw(u) = c (constant). In particular, if we put u = s, we have that F(s) = U(t, s)

Cw(s) = 0. Now, from the strongly continuity of U(t, s) we get that F(t) = lim ( ) lim ( , ) ( )
s t s t

F s U t s Cw s
− −→ →

= = 0. So,

F(t) = 0 ⇒ U(t, t) Cw(t) = 0 ⇒ C2w(t) = 0

Now, injectivity of C implies that w(t) = 0, we conclude that

z(t) = w(t)

which proves the uniqueness of the solution

Proposition 3.8: Let U(t, s), 0 ≤ s ≤ t < ∞ be regularized evolution operator on Z and C ∈ L(Z) injective
with A(t) its generator closed on D. If f : [0, T] → Z is continuous, then

0

1
lim ( , ) ( )

t h

th
U u s Cf u du

h

+

→ ∫  = U(t, s) Cf (t) (3.4)

0

1
lim ( , ) ( )

s h

sh
U t u Cf u du

h

+

→ ∫ = U(t, s) Cf (s). (3.5)

Proof: We prove (3.4), the proof of (3.5) is similar. s, t ≥ 0. We define the following function

ϕ(t) = U(t, s) Cf(t).

ϕ is clearly continuous in s. Hences

( )F = ( ) ( 0
t

t
u du

+
ϕ >∫

is well defined. Now,

F′(0) = 0 0

(0 ) (0) 1
lim lim ( ) , ( 0

t h

th h

F h F
u du h

h h

+

→ →

+ − = �ϕ >∫

and for each 0> we have

F ′( ) = ( ) ) ( , ) ( )
t

t

d
u du t U t s Cf t

d

+
ϕ = ϕ( + = + +∫

Putting 0> ,
F′(0) = U(t, s) Cf (t).

Therefore,
0

1
lim ( )

t h

th
u du

h

+

→
ϕ∫  = U(t, s) Cf (t).
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Proposition 3.9: Let U(t, s), 0 ≤ s ≤ t < ∞ be a regularized evolution operator commutative on Z and
C ∈ L(Z) injective with A(t) its generator closed on D. If f : [0, T] → Z is continuous then function. If {xn}
is a sequence in D such that xn → x and A(t)xn converges uniformly to f(t) in [0, T], then for each we have
that A(r)z = f(r).

Proof: Let be r ∈ [0, t], and s > 0. By definition,

A(r)xn = C–1

0

( , )
lim n n

s

U r h r x Cx
s+→

+ −
.

Passing to the limit as n → ∞ A(r)xn → A(r)x. Now, from the uniform convergence and the Proposition
3.6,

U(r + s, r)x – Cx = lim( ( , ) )n nn
U r s r x Cx

→∞
+ −

= lim ( ) ( , )
r s

nrn
A U r x d

+

→∞∫

= lim ( , ) ( )
r s

nrx
U r A x d

+

→∞∫

= lim ( , ) ( )
r s

nrx
U r A x d

+

→∞∫

= ( , ) ( )
r s

r
U r f d

+

∫
Dividing by s > 0,

( , )U r s r x Cx
s

+ −
 =

1
( , ) ( ) ,

r s

r
U r f d

s

+

∫
Consider C = I in the Proposition 3.8 and taking limits as s → 0+

A(r)x = 1

0

( , )
lim
s

U r s r x Cx
C

s+

−

→

+ −

=
1

0

1
lim ( , ) ( )

r s

rs
C U r f d

s+

+−

→

 
  ∫

= f(r).

Theorem  3.10: Let U(t, s), 0 ≤ s ≤ t < ∞ be a regularized evolution operator on Z and C ∈ L(Z)
injective with A(t) its generator closed on D. If f : [0, T] → D is a continuously differentiable function and

( , ) ( ) .
t

s
U r u C f u du D∈∫

Consider the non-homogeneous Cauchy problem,

2

2
0 0

( ) ( ) ( ) ( ), ,

( ) , , 0 .

z t A t z t C f t t s

z s C z z Z s t

 ′ = + ≥


= ∈ ≤ ≤
(3.6)

Then (3.6) admits as unique solution the function

z(t) = 0( , ) ( , ) ( ) .
t

s
U t s Cz U t C f d+ α α α∫ (3.7)
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Proof: For the existence of the solution it is enough to prove that the function z(t) in (3.7) has strong
derivative and satisfies the equation (3.6). Clearly z(s) = C2z0. On the other hand, the function y(t) = U(t, s)Cz0

is a solution of the initial value problem (3.3).

So we need prove that

( , ) ( ) ,
t

s
U t Cf dα α α∫

satisfies the initial value problem (3.6). Indeed, let us define the function

g(t) = ( , ) ( )
t

s
U t Cf dα α α∫

Since U(t, s) is strongly continuous evolution operator and f(⋅) is continuous, the above integral exists.
Let h ≠ 0 and consider the following quotient

( ) ( )g t h g t
h

+ −
= ( )1

( , ( ) ( , ) ( )
t h t

s s
U t h Cf d U t Cf d

h

+
+ α) α α − α α α∫ ∫

= ( )1
( ( , ) ( , ) ( )

t

s
U t h U t Cf d

h
+ α − α α α∫ 1

( , ) ( ) .
t

t
U t h Cf d

h
+ + α α α∫

But

( )
0

1
lim ( ( , ) ( , )) ( )

t

sh
U t h U t Cf d

h→
+ α − α α α∫

=
0

( ( , ) ( , ))
lim ( )

t

s h

U t h U t
Cf d

h→

+ α − α α α∫ = ( ) ( , ) ( ) ;
t

s
A t U t Cf dα α α∫

and

0

1
lim ( , ) ( )

t h

th
U t h Cf d

h

+

→
+ α α α∫  = C2f(t)

So, if ( , ( ) ,
t

s
U t Cf d Dα) α α ∈∫  then

g′(t) = 2( ) ( , ) ( ) ( )
t

s
A t U t Cf d C f tα α α +∫

= 2( ) ( , ) ( ) ( )
t

s
A t U t Cf d C f tα α α +∫

= 2( ) ( ) ( ).A t g t C f t+

Therefore:

z′(t) = 2
0( , ) ( ) ( , ) ( ) ( )

t

s
U t s Cz A t U t Cf d C f t

t
∂ + α α α +
∂ ∫

= 2
0( ) ( , ) ( , ( ) ( )

t

s
A t U t s Cz U t Cf d C f t+ α) α α +∫

= ( ) 2
0( ) ( , ) ( , ( ( )

t

s
A t U t s Cz U t Cf d C f t+ α) α) α +∫

= A(t) z(t) + C2 f(t).

The uniqueness is consequence of Theorem 3.7.
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4. A LEMMA ON REGULARIZED EVOLUTION OPERATORS

In this section we shall characterize a family of regularized evolution operators that can be used to and a
variation constants formula for a broad class of nonautonomous partial differential equations.

Lemma 4.1: Let Z be a Hilbert Space, {Un(t, s)}0 ≤ s ≤ t < ∞ a family of regularized evolution operators and
Pn(⋅) : [0, ∞) → L(Z); n = 1, 2, . . ., a family of strongly continuous orthogonal projections on Z, which are
complete and

Pn(t)Un(t, s) = Un(t, s) Pn(s); n = 1, 2, . . . , 0 ≤ s ≤ t < ∞.

Let us define the following family of linear operators

U(t, s) =
1

( , ) ( ) , 0n n
n

U t s P s z s t
∞

=

≤ ≤ < ∞.∑
Then, the following statements holds:

(i) {U(t, s)}0 ≤ s ≤ < ∞ is a regularized evolution operator, if ||Un(t, s)|| ≤ g(t, s), n = 1, 2, . . ., with g(t, s) ≥ 0,
continuous in 0 ≤ s ≤ t < ∞.

(ii) The generator A(t) : D → Z of {U(t, s)}0 ≤ s ≤ t < ∞ is given by

A(t)z =
1

( ) ( ) , ,n n
n

A t P t z z D
∞

=

∈∑
where

D ⊂ W = 2

1

: || ( ) ( ) || [0,n n
n

z Z A t P t z t
∞

=

 
∈ < ∞. ∀ ∈ ∞ 

 
∑ .

and if A(t) is a closed operator, then D = W.

(iii) Suppose A(t) is a closed operator. If z ∈ D, then U(t, s) z ∈ D.

Proof: We show first that U(t, s) is a bounded linear operator for fixed s = t. In fact, let z ∈ Z. Then

||U(t, s)z||2 =
1 1

( , ) ( ) , ( , ) ( )n n m m
n m

U t s P s z U t s P s z
∞ ∞

= =
∑ ∑

=
, 1

( , ) ( ) , ( , ) ( )n n m m
n m

U t s P s z U t s P s z
∞

=
∑

=
, 1

( ) ( , ) ( ) , ( ) ( , ) ( )n n n m m m
n m

P t U t s P s z P t U t s P s z
∞

=
∑

= 2

1

|| ( , ) ( ) ||n n
n

U t s P s z
∞

=
∑

≤ (g(t, s))2 ||z||2.

This proves that U(t, s) is bounded.

Now, we will show that U(t, r)U(r, s) = CU(t, s) for 0 = r = s = t < ∞

U(t, r)U(r, s)z =
1 1

( , ) ( ) ( , ) ( )n n i i
n i

U t r P r U r s P s z
∞ ∞

= =

 
  ∑ ∑
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=
1

( , ) ( , ) ( )n n n
n

U t r U r s P s z
∞

=
∑

=
1

( , ) ( )n n
n

CU t s P s z
∞

=
∑

= CU(t, s) z.

Next, we show that U(t, s) is strongly continuous in [0, ∞). In fact:

||U(t, s)z – Cz ||2 =
2

1 1

( , ) ( ) ( )n n n
n n

U t s P s z P s Cz
∞ ∞

= =

−∑ ∑

= 2

1

|| ( ( , ) ) ( ) ||n n
n

U t s C P s z
∞

=

−∑

= 2 2

1 1

|| ( ( , ) ) ( ) || || ( ( , ) ) ( ) ||n n n n
n n N

U t s C P s z U t s C P s z
∞ ∞

= = +

− + −∑ ∑

≤
2 2

1 1

sup || ( ( , ) ) ( ) || || ( ) ||n n n
n N n N

U t s C P s z N K P s z
∞

≤ ≤ = +

− + ∑

where K = 2 2

0 1;
sup || ( , ) || ( , ) 1)n

s t n
U t s C g t s

≤ ≤ ≥ 1
− ≤ ( +

Since {Un(t, s)}0 ≤ s ≤ t ≤ T (n = 1, 2, . . .) is a strongly continuous regularized evolution operator and
{Pn(s)}n ≥ 1 is a complete orthogonal projections, given an arbitrary  > 0 we have, for some natural
number N and 0 < s < t < 1, the following estimates:

2

1

|| ( ) ||n
n N

P s z
∞

= +
∑  < ,

2K
2

1
sup || ( , ) ) ( ) ||

2n n
n N

U t s C P s z
N≤ ≤

− <

and hence

||U(t, s) z – Cz||2 < ,
2 2

N K
N K

+ = .

Therefore, U(t, s) is a strongly continuous regularized evolution operator in [0, ∞). Let A(t) be the
generator of this evolution operator. Then, from definition 3.4, we have for all z ∈ D,

A(t) z = 1 1

0

( , )
lim
h

U t h t z Cz
C C

h+

− −

→

+ − =
0

1

( ( , ) )
lim ( ) .n

n
h

n

U t h t C
P t z

h+

∞

→ =

+ −∑

Therefore,

Pm(t)A(t)z = 1

0
1

( ( , )
( ) lim ( )n

m n
h

n

U t h t C
P t C P t z

h+

∞
−

→ =

 + −
  ∑

= 1

0

( ( , ) )
lim ( )m

m
h

U t h t C
C P t z

h+

−

→

+ −

= Am(t) Pm (t)z.
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Hence,

A(t)z =
1

( ) ( )n
n

P t A t z
∞

=
∑ =

1

( ) ( ) ,n n
n

A t P t z
∞

=
∑

and D ⊂ W = 2

1

: || ( ) ( ) ||n n
n

z Z A t P t z t
∞

=

 
∈ ∞, ∀ ∈[0,∞) 

 
∑

Now, suppose A(t) is closed and z ∈ 2

1

: || ( ) ( ) || 0,k k
k

z Z A t P t z t
∞

=

 
∈ < ∞, ∀ ∈[ ∞) 

 
∑ .

Then

2

1

|| ( ) ( ) ||k k
k

A t P t z
∞

=
∑ < ∞, t ∈ [0, ∞)

and y =
1

( ) ( ) .k k
k

A t P t z
∞

=
∑

Therefore, if we consider zn =
1

( ) ,
n

k
k

P t z
=

∑  then zn ∈ D and A(t)zn =
1

( ) ( ) .
n

k k
k

A t P t z
=

∑

Hence, lim nn
z

→∞
= z and lim ( ) nn

A t z y
→∞

= and since A(t) is a closed linear operator we get that z ∈ D and

A(t) z = y.

(iii) If A(t) is a closed operator, then D = W. Then for all z ∈ D we consider the following estimate

2

1

|| ( ) ( ) ||n n
n

A t P t z
∞

=
∑  < ∞, for all 0 ≤ t < ∞. Then

2

1

( ) ( , )n n
n

A t PU t s z
∞

=
∑  =

2

1 1

( ) ( ) ( , ) ( )n n k k
n k

A t P t U t s P s z
∞ ∞

= =

 
  ∑ ∑

=
2

1

( ) ( , ) ( )n n n
n

A t U t s P s z
∞

=
∑

≤ 2

1

|| ( ) ( , ) ( ) ||n n n
n

A t U t s P s z
∞

=
∑

≤ 2 2

1

( ( , )) || ( ) ( ) ||n n
n

g t s A t P s z
∞

=
∑

< ∞.

for all 0 ≤ s ≤ t < ∞. Hence, U(t, s) z ∈ D for all z ∈ D and 0 ≤ s ≤ t < ∞.
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5. APPLICATIONS

Here we shall use the foregoing results to find a formula for the following system of non autonomous
partial parabolic equations:

( , )
( , ) ( ) ( , ) ( ) ( , ), 0,

( , )
0,

(0, ) ( ) ( ),

nu t x
D u t s B t u t s x f t x t u

t
u t x

t x

u x x x x

2

2

∂ = ∆ + + α > ∈ , ∂
∂ = > ∈� ∂Ω, ∂η


= α ∈Ω,



(5.1)

w h e r e Ω is a bounded domain in N (N ≥ 1), α, L2 (Ω), with α(x) > 0, x∀ ∈Ω  and D is an n × n

matrix whose eigenvalues are semisimple with non negative real part or strictly positive and f :  × Ω → n

is a smooth function. We assume that the operator B ∈ P∞ ([0, ∞); Γ (Z)) :

{ }1 2 1 2 ( )
0

/ , ( es medible (ess sup || ( ) || z
t

B z B z z z Z y B t Γ
≤ < ∞

⋅) ∀ ∈ < ∞

with Z = L2(Ω).

5.1. Abstract Formulation of the Problem

We choose a Hilbert space where system (5.1) can be written as an abstract differential equation; to this
end, we consider the following notations:

Let us consider the Hilbert space Z = L2 (Ω, ) y 0 = λ1 < λ2 < . . . < λj → ∞ the eigenvalues of each
one with .finite multiplicity –∆, equal to the dimension of the corresponding eigenspace. Then, we have
the following well known properties (see [9]):

(i) There exists a complete orthonormal set {φj, k} of eigenvectors of – ∆.

(ii) For all ξ ∈ D (–∆) we have

–Dξ = ,
1 11

j
j j k j j

j j

E
j

∞ ∞

= =

γ
λ < ξ,φ = λ ξ,

=∑ ∑ (5.2)

where

Ejx = , ,
1

, .
j

j k j k
k

γ

=

< ξ φ > φ∑ (5.3)

So, {Ej} is a family of complete orthogonal projections in H and

(iii) ∆ generates an analytic semigroup {T∆(t)} given by

T∆(t)x =
1

jt
j

j

e E
∞

−λ

=

ξ∑ (5.4)

(iv) There exists a constant M ≥ 1 such that:

|| ||jDte−λ ≤ M, t ≤ 0, n = 1, 2, 3,...

Now, we denote by Z the Hilbert space ( 2 ( , )nL Ω   and define the following operator
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       A : D (A) ⊂ Z → Z, A D= − ∆

with 2 1
0( ) ( ) ( , ).n nD A H H= Ω, ∩ Ω   Therefore, for all z ∈ D (A) we obtain

Az =
1

j j
j

DP z
∞

=

λ∑ and 2

1

, || ||j
j

P z z
∞

=
∑  = 2

1

|| || , ,j
j

P z z Z
∞

=

∈∑

where

Pj = diag (Ej, Ej, ..., Ej)

is a family of complete orthogonal projections in Z. Using Lemma 3.1 from [4] one can prove
the following theorem.

Theorem 5.1: The operator – A is the infinitesimal generator of a strongly continuous semigroup
{TA(t)}t ≥ 0 in the space Z, given by

TA (t)z =
∞

λ

=
∑ –

1

jDt
j

j

e P z , z ∈ Z, t ≥ 0. (5.5)

Consequently, the system (5.1) can be written as an abstract ordinary differential equation in Z:

2

2
0

( )
– ( ) ( ) ( ) ( ), 0

(0) ,

edz t
Az t B t z t C f t t

dt
z C z

 = + + >

 =

(5.6)

where z0 ∈ Z, C : Z → Z is an injective bounded linear operator defined by :

(Cz) (x) = α(x) z(x), z ∈ Z x ∈ Ω,

which is trivially injective, and fe: [0, ∞) → Z is a function defined as follows:

fe(t) (x) = f(t, x), t ≥ 0, x ∈ Ω.

In case that fe ≡ 0 the system (5.6) is given by:

2
0

( )
– ( ) ( ) ( ), 0,

( )

dz t
Az t B t z t t

dt
z s C z

 = + >

 =

(5.7)

Definition 5.2: (Mild Solution) Note any solution z of the initial value problem (5.7) satisfies the
integral equation.

z(t) = TA(t – s) Cz0 + ( – ) ( ) ( ) ,
t

As
T t B z dγ γ γ γ∫ t ∈ [s, ∞), (5.8)

but the converse is not true since a solution of (5.8) is not nessessarily differential. We shall refer to
a continuous solution of (5.8) as a mild solution of (5.7); a mild solution is thus a kind of generalized
solution.

Define the following operator in the space Z for t ≥ s ≥ 0 by

U(t, s) z0 = TA(t – s) Cz0 + 0( – ) ( ) ( , )
t

As
T t B U t z dγ γ γ γ∫ . (5.9)

Then, Lemma 4.1 we get the following results,
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Theorem 5.3: The family of operators {U(t, s)}t ≥ s ≥ 0 defined by (5.9) is a strongly continous evolution
opeator on Z such that

U(t, s) z =
1

( , )n n
n

U t s P z
∞

=
∑ , z ∈ Z, t ≥ s ≥ 0, (5.10)

where {{Uj(t, s)}t ≥ s ≥ 0, j = 1, 2, 3, ...} is a family of strongly continuous evolution operators on Zj = PjZ
defined as follows

Uj(t, s) zj
0 = zj (t, s, zj

0)

where zj(⋅) is the unique solution of the initial value problem

0

( )
– ( ) ( ) ( ), ,

( )

j j

j

dz t
Dz t B t z t t s

dt
z s Cz

 = λ + >

 =

(5.11)

Therefore, the system (5.7) y (5.6) are equivalent to the following two system of ordinary differential
equations in Z respectively.

0

( )
– ( ) ( ), ,

( ) ,

dz t
t z t t s

dt
z s Cz

 = Λ + >

 =

(5.12)

0

( )
( ) ( ) ( ), ,

( ) ,

edz t
t z t f t t s

dt
z s Cz

 = Λ + + >

 =

(5.13)

where ( )tΛ = –A + B(t) is the infinitesimal generator of the evolution operator {U(t, s)}t ≥ s.

Finally, applying Theorem 5.3 we obtain the following result:

Theorem 5.4: The abstract Cauchy problem in the Hilbert space Z

2

0

( )
( ) ( ) ( ), ,

( ) ,

edz t
t z t C f t t s

dt
z s Cz

 = Λ + + >

 =

where ( )tΛ is the generator of the evolution operator {U(t, s)}t ≤ s admits one and only one solution
given by:

z(t) = 0( , ) ( , ) ( ) , .
t e

s
U t s z U t Cf d t s+ γ γ γ ≥∫ (5.14)
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