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Abstract In this paper, we prove the approximate controllability of the following
semilinear beam equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂2 y(t, x)

∂t2 = 2β�
∂y(t, x)

∂t
− �2 y(t, x) + u(t, x) + f (t, y, yt, u), in (0, τ ) × �,

y(t, x) = �y(t, x) = 0, on (0, τ ) × ∂�,

y(0, x) = y0(x), yt(x) = v0(x), x ∈ �,

in the states space Z1 = D(�) × L2(�) with the graph norm, where β > 1, � is a
sufficiently regular bounded domain in IRN , the distributed control u belongs to
L2([0, τ ]; U) (U = L2(�)), and the nonlinear function f : [0, τ ] × IR × IR × IR −→
IR is smooth enough and there are a, c ∈ IR such that a < λ2

1 and

sup
(t,y,v,u)∈Qτ

| f (t, y, v, u) − ay − cu |< ∞,

where Qτ = [0, τ ] × IR × IR × IR. We prove that for all τ > 0, this system is approx-
imately controllable on [0, τ ].
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1 Introduction

In this paper, we prove the approximate controllability of the following semilinear
beam equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2 y(t, x)

∂t2 = 2β�
∂y(t, x)

∂t
− �2 y(t, x) + u(t, x)

+ f (t, y(t, x), yt(t, x), u(t, x)), in (0, τ ) × �

y(t, x) = �y(t, x) = 0, on (0, τ ) × ∂�,

y(0, x) = y0(x), yt(x) = v0(x), x ∈ �,

(1.1)

where β > 1, � is a sufficiently regular bounded domain in IRN , the distributed
control u belongs to L2([0, τ ]; U) (U = L2(�)), and the nonlinear function f :
[0, τ ] × IR × IR × IR −→ IR is smooth enough and there are a, c ∈ IR such that a <

λ2
1, with λ1 as the first eigenvalue of −� with Dirichlet boundary condition, and

sup
(t,y,v,u)∈Qτ

| f (t, y, v, u) − ay − cu |< ∞, (1.2)

where Qτ = [0, τ ] × IR × IR × IR. We prove that for all τ > 0, system (1.1) is approx-
imately controllable on [0, τ ].

Here, the state space is Z1 = [
H2(�)

⋂
H1

0(�)
] × L2(�) = D(−�) × L2(�) en-

dowed with the graph norm; that is to say
∥
∥
∥
∥

(
y
v

)∥
∥
∥
∥

Z1

=
√

‖(−�)y‖2
L2 + ‖v‖2

L2 ,

where

‖v‖ = ‖v‖L2 =
√∫

�

|v(x)|2dx, ∀v ∈ L2(�).

Remark 1.1 The term −2β�
∂y(t, x)

∂t
in Eq. (1.1) acts as a damping force; hence, the

energy space used to set up the wave equation is not adequate here. In fact, the
uncontrolled linear equation can be transformed into a system of parabolic equations
of the form zt = D�z (see [4]), which shows that Z1 = [

H2(�)
⋂

H1
0(�)

] × L2(�)

is the right space for an abstract formulation of the problem. The controllability of
similar equations was proposed in [8] as a future work.

Definition 1.1 (Approximate Controllability) System (1.1) is said to be approximate
controllable on [0, τ ] if for every z0 = (y0, v0)

T , z1 = (y1, v1)
T ∈ Z1, ε > 0, there
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Controllability of the Semilinear Beam Equation

Fig. 1 Verification of
‖z(τ ) − z1‖

exists u ∈ L2(0, τ ; U) such that the mild solution z(t) = (y(t), yt(t))T of Eq. (1.1),
corresponding to u, verifies (Fig. 1) the following:

z(0) = z0 and ‖ z(τ ) − z1 ‖Z1< ε.

Under certain conditions, we prove the following statement: The nonlinear
system (1.1) is approximately controllable on [0, τ ]. Moreover, we can exhibit a
sequence of controls steering the system from an initial state to an ε-neighborhood
of a final state in a prefixed time τ .

Now, we shall describe the strategy of this work:
First, we prove that the auxiliary linear system in (0, τ ) × �

⎧
⎪⎪⎨

⎪⎪⎩

∂2 y(t, x)

∂t2 = 2β�
∂y(t, x)

∂t
− �2 y(t, x) + u(t, x) + ay(t, x) + cu(t, x),

y(t, x) = �y(t, x) = 0, on (0, τ ) × ∂�,

y(0, x) = y0(x), yt(x) = v0(x), x ∈ �,

(1.3)

is approximately controllable.
After that, we write system (1.1) in the following form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2 y(t, x)

∂t2 = 2β�
∂y(t, x)

∂t
− �2 y(t, x) + u(t, x)

+ ay(t, x) + cu(t, x) + g(t, y, yt, u), in (0, τ ) × �

y(t, x) = �y(t, x) = 0, on (0, τ ) × ∂�,

y(0, x) = y0(x), yt(x) = v0(x), x ∈ �,

(1.4)

where g(t, y, v, u) = f (t, y, v, u) − ay − cu is a smooth-enough and bounded
function.

The technique we use here to prove the controllability of the linear equation (1.3)
is based on the Kalman condition [7] and Lemma 3.1.b from [6].

To prove the approximate controllability of the nonlinear system (1.1), we take
some ideas from [14]. That is to say, the approximate controllability of system (1.1)
follows from the approximate controllability of system (1.3), the compactness of the
semigroup generated by linear part of system (1.3), the uniform boundedness of the
nonlinear term g, and applying the Schauder fixed point theorem.

2 Abstract Formulation of the Problem

In this section, we choose the space in which this problem will be set as an ab-
stract ordinary differential equation. Let Z = L2(�) (with the norm ‖z‖ = ‖z‖L2 =
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‖z‖Z , z ∈ Z ) and consider the linear unbounded operator A : D(A) ⊂ Z → Z
defined by Aφ = −�φ, where

D(A) = H1
0(�) ∩ H2(�). (2.1)

The operator A has the following very well-known properties: the spectrum of A
consists of only eigenvalues

0 < λ1 < λ2 < · · · < λn → ∞,

each one with multiplicity γn equal to the dimension of the corresponding eigenspace.

(a) There exists a complete orthonormal set {φn,k}γn

k=1, n = 1, 2, 3, . . . of eigenvec-
tors of A.

(b) For all z ∈ D(A), we have

Az =
∞∑

n=1

λn

γn∑

k=1

< z, φn,k > φn,k =
∞∑

n=1

λn Enz, (2.2)

where < ·, · > is the inner product in Z and

Enz =
γn∑

k=1

< z, φn,k > φn,k. (2.3)

So, {En} is a family of complete orthogonal projections in z and

z =
∞∑

n=1

Enz, z ∈ Z . (2.4)

(c) −A generates an analytic semigroup {T(t)}t≥0 given by

T(t)z =
∞∑

n=1

e−λnt Enz. (2.5)

(d) The fractional powered spaces Z r are given by

Z r = D(Ar) =
⎧
⎨

⎩
z ∈ Z :

∞∑

j=1

λ2r
j ‖E jz‖2 < ∞

⎫
⎬

⎭
, r ≥ 0,

with the norm

‖z‖r = ‖Arz‖ =
⎧
⎨

⎩

∞∑

j=1

λ2r
j ‖E jz‖2

⎫
⎬

⎭

1/2

, z ∈ Z r,

and

Arz =
∞∑

j=1

λr
jE jz. (2.6)

For r=1, we define Z1 = Z 1×Z , which is a Hilbert space with a norm given by
∥
∥
∥
∥

(
y
v

)∥
∥
∥
∥

Z1

= {‖y‖2
1 + ‖v‖2}1/2

.
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Controllability of the Semilinear Beam Equation

Hence, Eq. (1.1) can be written as an abstract system of ordinary differential
equations in the Hilbert space Z1 as follows:

{
y′ = v,

v′ = −A2 y − 2β Av + u + f (t, y, v, u).
(2.7)

Finally, Eq. (1.1) can be rewritten as a first-order system of ordinary differential
equations in the Hilbert space Z1 as follows:

z′ = Az + Bu + F(t, z, u), z ∈ Z1, t ≥ 0

where u ∈ L2([0, τ ]; U), U = Z = L2(�),

A =
(

0 IZ

−A2 −2β A

)

(2.8)

is an unbounded linear operator with domain

D(A) = {y ∈ H4(�) : y = �y = 0 on (0, τ ) × ∂�} × D(A),

i.e.,

z=
(

y
v

)

∈ D(A)⇔ y∈{
y∈ H4(�) : y=�y=0 on (0, τ )×∂�

}
and v∈ D(A).

I = IZ : Z = L2(�) → Z is the identity operator, B : U → Z1, B =
(

0
IZ

)

is

a bounded linear operator, and F(t, z, u) =
(

0
f (t, y, v, u)

)

is smooth enough

with

sup
(t,z,u)∈Q̂τ

‖ F(t, z, u) − Baz − Bcu ‖Z1< ∞, (2.9)

where Q̂τ = [0, τ ] × Z1 × U and Ba =
(

0
aI

)

and Bc =
(

0
cI

)

, a < λ2
1.

Systems (1.3) and (1.4) can be written as an ordinary differential equation in
the Hilbert space Z1 as follows:

z′ = Az + Bu + Baz + Bcu, t ∈ (0, τ ], (2.10)

z′ = Az + Bu + Baz + Bcu + G(t, z, u), t ∈ (0, τ ], (2.11)

where G(t, z, u) = F(t, z, u) − Baz − Bcu.
On the other hand, hypothesis (2.9) implies that

sup
(t,z,u)∈Q̂τ

‖ G(t, z, u) ‖Z1< ∞. (2.12)

Therefore, G : Q̂τ −→ Z1 is a smooth-enough and bounded function.
Now, using the following lemma from [10], we can prove that the linear
unbounded operator A given by the linear equation (2.8) generates a strongly
continuous compact semigroup in the space Z1, which decays exponentially to
zero.
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Lemma 2.1 Let Z be a Hilbert separable space and {A j} j≥1, {Pj} j≥1 the two families of
bounded linear operator in Z , with {Pj} j≥1 a family of complete orthogonal projection
such that

A j Pj = Pj A j, j ≥ 1.

Def ine the following family of linear operators:

T(t)z =
∞∑

j=1

eA jt P jz, z ∈ Z , t ≥ 0.

Then:

(a) T(t) is a linear and bounded operator if ‖eA jt‖ ≤ g(t), j = 1, 2, ..., with g(t) ≥ 0,
continuous for t ≥ 0.

(b) Under the same condition with that in (a), {T(t)}t≥0 is a strongly continuous
semigroup in the Hilbert space Z , whose inf initesimal generator A is given by

Az =
∞∑

j=1

A j Pjz, z ∈ D(A),

with

D(A) =
⎧
⎨

⎩
z ∈ Z :

∞∑

j=1

‖A j Pjz‖2 < ∞
⎫
⎬

⎭
.

(c) The spectrum σ(A) of A is given by

σ(A) =
∞⋃

j=1

σ(A j),

where Ā j = A j Pj : R(Pj) → R(Pj).

Theorem 2.1 The operator A is the inf initesimal generator of a strongly continuous
compact semigroup {T(t)}t≥0 represented by

T(t)z =
∞∑

j=1

eA jt P jz, z ∈ Z1, t ≥ 0, (2.13)

where {Pj} j≥0 is a complete family of orthogonal projections in the Hilbert space Z1

given by

Pj = diag(E j, E j), (2.14)

and

A j = K j Pj, K j =
(

0 1
−λ2

j −2βλ j

)

j ≥ 1,

and the adjoint operator A∗ of the operator A is given by

A
∗
j = K̃ j P j, K̃ j =

(
0 −1
λ2

j −2βλ j

)

j ≥ 1.
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Controllability of the Semilinear Beam Equation

Moreover, the eigenvalues σ1( j), σ2( j), of the matrix K j are simple and given by

σ1( j) = −λ jρ1, σ2( j) = −λ jρ2

where 0 < ρ1 < ρ2 is given by

ρ1 = β −
√

β2 − 1 and ρ2 = β +
√

β2 − 1; , β2 > 1,

and this semigroup decays exponentially to zero

‖ T(t) ‖≤ Me−μt, t ≥ 0,

where μ = λ1ρ1 and ‖ T(t) ‖= sup‖z‖=1‖T(t)z‖.

Proof Let us compute Az:

Az =
(

0 I
−A2 −2β A

)(
y
v

)

=
(

v

−A2 y − 2β Av

)

=
( ∑∞

j=1 E jv

−∑∞
j=1 λ2

j E jy − 2β
∑∞

j=1 λ jE jv

)

=
∞∑

j=1

(
E jv

−λ2
j E jy − 2βλ jE jv

)

=
∞∑

j=1

(
0 1

−λ2
j −2βλ j

)(
E j 0
0 E j

)(
y
v

)

=
∞∑

j=1

A j Pjz.

It is clear that A j Pj = Pj A j. Now, we need to check condition (a) from Lemma 2.1.
To this end, we observe that the eigenvalues σ1( j), σ2( j) of the matrix K j are simple
and given by

σ1( j) = −λ jρ1, σ2( j) = −λ jρ2

where 0 < ρ1 < ρ2 are given by

ρ1 = β −
√

β2 − 1 and ρ2 = β +
√

β2 − 1; β2 > 1.

Since the eigenvalues of K j are simple, there exists a complete family of complemen-
tary projections {qi( j)}2

i=1 in IR2 such that

{
K j = σ1( j)q1( j) + σ1( j)q2( j)

eK jt = e−λ jρ1tq1( j) + e−λ jρ2tq2( j),

Author's personal copy



A. Carrasco et al.

where qi( j), i = 1, 2, is given by

q1( j) = 1
(ρ1 − ρ2)

(
ρ2

1
λ j

−λ j ρ2 − 2β

)

q2( j) = 1
(ρ2 − ρ1)

(
ρ1

1
λ j

−λ j ρ1 − 2β

)

.

Therefore,
{

A j = σ1( j)Pj1 + σ1( j)Pj2

eA jt = e−λ jρ1t P j1 + e−λ jρ2t P j2,

and

Az =
∞∑

j=1

{
σ1( j)Pj1z + σ2( j)Pj2z

}
, (2.15)

where Pji = qi( j)Pj is a complete family of orthogonal projections in Z1.
To prove that eAnt Pn : Z1 → Z1 satisfies condition (a) from Lemma 2.1, it will be

enough to prove for example that e−λnρ2tq1(n)Pn, n = 1, 2, 3, . . . satisfies condition
(a). In fact, consider z = (z1, z2, )

T ∈ Z1 such that ‖z‖ = 1. Then,

‖z1‖2
1 =

∞∑

j=1

λ2
j‖E jz1‖2 ≤ 1, ‖z2‖2

Z =
∞∑

j=1

‖E jz2‖2 ≤ 1 .

Therefore, λ j‖E jz1‖ ≤ 1, ‖E jz2‖ ≤ 1, j = 1, 2, . . . . Then,

|e−λnρ1tq1(n)Pnz‖2
Z1

= e−2λnρ1t

(ρ1 − ρ2)2

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

ρ2 Enz1 + 1
λn

Enz2

−λn Enz1 + (ρ2 − 2β)Enz2

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

Z1

= e−2λnρ1t

(ρ1 − ρ2)2

∞∑

j=1

λ2
j‖E j

(

ρ2 Enz1 + 1
λn

Enz2

)

‖2

+ e−2λnρ1t

(ρ1 − ρ2)2

∞∑

j=1

‖E j (−λn Enz1 + (ρ2 − 2β)Enz2) ‖2

= e−2λnρ1t

(ρ1 − ρ2)2 ‖λnρ2 Enz1 + 1
λn

Enz2‖2

+ e−2λnρ1t

(ρ1 − ρ2)2 ‖ − λn Enz1 + (ρ2 − 2β)Enz2‖2.

Since λ j‖E jz1‖ ≤ 1 and ‖E jz2‖ ≤ 1, j = 1, 2, . . . , we get that

|e−λnρ1tq1(n)Pnz‖2
Z1

≤ M2e−2λnρ1t

where M = M(β) ≥ 1 depending on β. Then, we have

‖e−λnρ1tq1(n)Pn‖Z1 ≤ M(β)e−λnρ1t, t ≥ 0 n = 1, 2, . . . .
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Controllability of the Semilinear Beam Equation

In the same way, we obtain that

‖e−λnρ2tq2(n)Pn‖Z1 ≤ M(β)e−λnρ2t, t ≥ 0 n = 1, 2, . . . .

Therefore,

‖eAnt Pn‖Z1 ≤ M(β)e−μt, t ≥ 0 n = 1, 2, . . . ,

was

μ = λ1ρ1.

Hence, applying Lemma 2.1, we obtain that A generates a strongly continuous
semigroup given by Eq. (2.13), which implies that this semigroup is compact.
Next, we prove that this semigroup decays exponentially to zero. In fact,

‖T(t)z‖2 =
∞∑

j=1

‖eA jt P jz‖2

≤
∞∑

j=1

‖eA jt‖2‖Pjz‖2

≤ M2(β)e−2μt
∞∑

j=1

‖Pjz‖2

= M2(β)e−2μ‖z‖2.

Therefore,

‖T(t)‖ ≤ M(β)e−μt, t ≥ 0.

��

Systems (2.10) and (2.11) also can be written as follows:

z′ = Az + (B + Bc)u, z ∈ Z1 t ∈ (0, τ ]. (2.16)

z′ = Az + (B + Bc)u + G(t, z, u), z ∈ Z1 t ∈ (0, τ ] (2.17)

where the operator A is given by

A =
(

0 IZ

−A2 + aI −2β A

)

. (2.18)

The following corollary follows from the foregoing theorem:

Corollary 2.1 The operator A is the inf initesimal generator of a strongly continuous
compact semigroup {Ta(t)}t≥0 represented by

Ta(t)z =
∞∑

j=1

eA jt P jz, z ∈ Z1, t ≥ 0

Author's personal copy
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where {Pj} j≥0 is a complete family of orthogonal projections in the Hilbert space Z1

given by

Pj = diag(E j, E j), (2.19)

and

A j = K j Pj, K j =
(

0 1
−λ2

j + a −2βλ j

)

j ≥ 1,

and the adjoint operator A∗ of the operator A is given by

A
∗
j = K̃ j P j, K̃ j =

⎛

⎝
0

a

λ2
j

− 1

λ2
j −2βλ j

⎞

⎠ j ≥ 1.

Moreover, the eigenvalues σ1( j), σ2( j), of the matrix K j are simple and given by

σ1( j) = −λ jρ1 j, σ2( j) = −λ jρ2 j

where 0 < ρ1 j < ρ2 j is given by

ρ1 j = β −
√

β2 − 1 + a

λ2
j

and ρ2 j = β +
√

β2 − 1 + a

λ2
j

; a < λ2
1, β2 > 1,

and this semigroup decays exponentially to zero

‖ Ta(t) ‖≤ Me−μt, t ≥ 0,

where μ = λ1ρ11 and ‖ Ta(t) ‖= sup‖z‖=1‖Ta(t)z‖.

3 Approximate Controllability of the Linear System

In this section, we shall prove the approximate controllability of the linear sys-
tem (2.16). To this end, for all z0 ∈ Z1 and u ∈ L2([0, τ ]; U), the initial value problem

⎧
⎨

⎩

z′(t) = Az(t) + (B + Bc)u(t), z ∈ Z1,

z(0) = z0,

(3.1)

admits only one mild solution given by

z(t) = Ta(t)z0 +
∫ t

0
Ta(t − s)(B + Bc)u(s)ds; t ∈ [0, τ ]. (3.2)

Definition 3.1 For system (3.1), we define the following concept:
The controllability map (for τ > 0) Ga : L2([0, τ ]; U) −→ Z1 is given by

Gau =
∫ τ

0
Ta(τ − s)(B + Bc)u(s)ds, (3.3)

whose adjoint operator G∗
a : Z1 −→ L2([0, τ ]; U) is given by

(G∗
az)(s) = (B∗ + (Bc)∗)Ta(τ − s)z, ∀s ∈ [0, τ ], ∀z ∈ Z1. (3.4)
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The following lemma is trivial:

Lemma 3.1 Equation 3.1 is approximately controllable on [0, τ ] if, and only if,
Rang(Ga) = Z1.

The following theorem is a characterization of the approximate controllability of
system (3.1) (see [1, 2, 15]):

Theorem 3.1 System (3.1) is approximately controllable on [0, τ ] if, and only if, any
one of the following conditions hold:

(a) Rang(Ga) = Z1.
(b) Ker(G∗

a) = {0}.
(c) (B + Bc)∗T∗

a (s)z = 0, ∀s ∈ [0, τ ] =⇒ z = 0.
(d) limα→0+α(αI + GaG∗

a)
−1z = 0.

(e) supα>0‖α(αI + GaG∗
a)

−1‖ ≤ 1.
(f) 〈GaG∗

az, z〉 > 0, z �= 0 in Z .
(g) For all z ∈ Z1, we have Gauα = z − α(αI + GaG∗

a)
−1z, where

uα = G∗
a(αI + GaG∗

a)
−1z, α ∈ (0, 1].

So, limα−→0Gauα = z and the error Eαz of this approximation is given by

Eαz = α(αI + GaG∗
a)

−1z, α ∈ (0, 1].

Remark 3.1 Theorem 3.1 implies that the family of linear operators

�αz = (B + Bc)�T∗
a (·)(αI + GaG∗

a)
−1z = G∗

a(αI + GaG∗
a)

−1z

is an approximate inverse for the right of the operator Ga in the sense that

lim
α−→0

Ga�αz = z, ∀z ∈ Z1.

In other words,

lim
α−→0

Ga�α = I,

in the strong topology of Z1.

Now, we are ready to prove the controllability of the linear system (2.16).

Theorem 3.2 System (3.1) is approximately controllable.

Proof It is easy to see that Pj(B + Bc)(B + Bc)∗ = (B + Bc)(B + Bc)∗ Pj, j =
1, 2, . . .. Then, applying Lemma 3.1. part (b) from [6], we obtain that the approximate
controllability of system (3.1) is equivalent to the approximate controllability of each
of the finite dimensional systems

y′ = A jy + (B + Bc) ju(t), y(t) ∈ Ran(Pj), t ≥ 0 j = 1, 2, . . . , (3.5)
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where (B + Bc) j = Pj(B + Bc) j : U −→ Ran(Pj),

(B + Bc) ju = Pj(B + Bc) ju

=
(

0
1 + c

)

E ju

= DjE ju.

But, the approximate controllability of system (3.5) is equivalent to the controllabil-
ity of each of finite dimensional systems

x′ = C jx + Dju, x ∈ R
2, (3.6)

where u ∈ R and

C j =
⎛

⎝
0 λ2

j
a

λ2
j

− 1 −2βλ j

⎞

⎠ , C∗
j =

⎛

⎝
0

a

λ2
j

− 1

λ2
j −2βλ j

⎞

⎠ = K̃ j, j ≥ 1.

And it is known (see [7, 9]) that system (3.6) is controllable if, and only if,

Rank[Dj|C jDj] = 2,

which, doing the respective calculation, is trivially true.
In fact, the controllability of systems (3.5) and (3.6) are equivalent, respectively,

to the following uniqueness continuation principle (see [1, 2]):

(B + Bc)∗j e
A∗

j t y = 0, ∀t ∈ [0, τ ] ⇒ y = 0, y ∈ Ran(Pj).

D∗
j e

C∗
j tx = 0, ∀t ∈ [0, τ ] ⇒ x = 0, x ∈ R

2.

On the other hand, we have that

(B + Bc)∗j e
A∗

j t y = D∗
j e

K̃ jt P jy = D∗
j e

C∗t P jy, ∀t ∈ [0, τ ] ⇒ Pjy = y = 0.

In consequence, we have proved that system (3.1) is approximately controllable. ��

4 Controllability of the Semilinear Beam Equation

In this section, we shall prove the main result of this paper, the controllability of
the semilinear beam equation given (Eq. (1.1)), which is equivalent to prove the
approximate controllability of system (2.10). To this end, we note that since the
function G(t, z, u) is smooth enough, then for all z0 ∈ Z1 and u ∈ L2([0, τ ]; U)

the initial value problem
⎧
⎨

⎩

z′(t) = Az + (B + Bc)u + G(t, z, u), t ≥ 0,

z(0) = z0,

(4.1)
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admits only one mild solution given by (see [5], p. 90)

z(t) = Ta(t)z0 +
∫ t

0
Ta(t − s)(Bc + B)u(s)ds +

∫ t

0
Ta(t − s)G(s, z, u)ds, t ∈ [0, τ ].

(4.2)

Remark 4.1 (See [11, 12], and [13]) The function G is smooth enough if:

(a) The mild solution z(u) = zu of problem (4.1) is unique.
(b) The mild solution z(u) = zu depends continuously on u.
(c) Moreover, If F is a Lipschitz function, then z(u) = zu, as a function of u, is also

a Lipschitz function.

Remark 4.2 The approximate controllability of system (4.1) consists in what follows:
Given two states z0, z1 ∈ Z1, find a control u ∈ L2([0, τ ]; U) such that the corre-

sponding mild solution (4.2) z = zu = z(u) satisfies

z1 ≈ Ta(τ )z0 +
∫ τ

0
Ta(τ − s)(Bc + B)u(s)ds +

∫ τ

0
Ta(τ − s)G(s, zu, u)ds,

i.e.,

z1 − Ta(τ )z0 ≈
∫ τ

0
Ta(τ − s)(Bc + B)u(s)ds +

∫ τ

0
Ta(τ − s)G(s, zu, u)ds,

i.e.,

z1 − Ta(τ )z0 ≈ Ga(u) +
∫ τ

0
Ta(τ − s)G(s, zu, u)ds,

i.e.,

Ga(u) ≈ z1 − Ta(τ )z0 −
∫ τ

0
Ta(τ − s)G(s, zu, u)ds,

where the notation l ≈ m indicates that l is approximately equal to m.

Remark 4.3 Without lose of generality, from now on, we will assume that initial state
z0 is fixed.

These remarks serve as a motivation for the following definition:

Definition 4.1 For system (4.1), we define the following concept: The nonlinear
controllability map (for τ > 0) Gg : L2([0, τ ]; U) −→ Z1 is given by

Ggu =
∫ τ

0
Ta(τ − s)(Bc + B)u(s)ds +

∫ τ

0
Ta(τ − s)G(τ, zu, u)ds = Ga(u) + H(u)

where H : L2([0, τ ]; U) −→ Z1 is the nonlinear operator given by

H(u) =
∫ τ

0
Ta(τ − s)G(τ, zu, u)ds,

where z = zu = z(u) is the corresponding mild solution of the initial value
problem (4.1).
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The following lemma is trivial:

Lemma 4.1 System (4.1) is approximately controllable on [0, τ ] if, and only if,
Rang(Gg) = Z1.

Proof

(Sufficiency) Suppose system (4.1) is approximately controllable on [0, τ ]; i.e., for
all z1 ∈ Z1 and ε > 0, there exists a control u ∈ L2([0, τ ]; U) such
that the corresponding mild solution of the initial value problem (4.1)
satisfies

‖z(τ ) − z1‖Z1 ≤ ε.

Now, we shall prove that Rang(Gg) = Z1. In fact, if we put, for all
z ∈ Z1, z1 = z + T(τ )z0, we obtain that

‖z(τ ) − z1‖Z1 = ‖z(τ ) − T(τ )z0 − z‖Z1 = ‖Gg(u) − z‖Z1 ≤ ε,

which implies that Rang(Gg) = Z1.
(Necessity) Suppose that Rang(Gg) = Z1; i.e., for all ε > 0 and z ∈ Z1, there

exists a control u ∈ L2([0, τ ]; U) such that

‖Gg(u) − z‖Z1 ≤ ε.

Now, if we put, for all z1 ∈ Z1 and ε > 0, z = z1 − Ta(τ )z0, we obtain
that

‖Gg(u) − z‖Z1 = ‖Gg(u) + T(τ )z0 − z1‖Z1 = ‖z(τ ) − z1‖Z1 ≤ ε,

which implies that system (4.1) is approximately controllable. ��

From the above remarks and lemma, we have the following approximation:

Ga(u) ≈ z1 − Ta(τ )z0 − H(u) = z − H(u),

where z = z1 − Ta(τ )z0. This motivates the following definition:

Definition 4.2 The following equation will be called the controllability equation
associated to the nonlinear system (4.1)

u = �α(z − H(u)) = G∗
a(αI + GaG∗

a)
−1(z − H(u)), (0 < α ≤ 1).

Now, we are ready to present and prove the main result of this paper, which is the
approximate controllability of the semilinear beam equation (1.1)

Theorem 4.1 System (4.1) is approximately controllable on [0, τ ]. Moreover, a se-
quence of controls steering system (4.1) from initial state z0 to an ε-neighborhood of
the f inal state z1 at time τ > 0 is given by

uα(t) = (B + Bc)∗T∗
a (τ − t)(αI + GaG∗

a)
−1(z1 − Ta(τ )z0 − H(uα)),

and the error of this approximation Eα is given by

Eα = α(αI + GaG∗
a)

−1(z1 − Ta(τ )z0 − H(uα)).
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Proof For each z ∈ Z1 fixed, we shall consider the following family of nonlinear
operators Kα : L2([0, τ ]; U) −→ L2([0, τ ]; U) given by

Kα(u) = �α(z − H(u)) = G∗
a(αI + GaG∗

a)
−1(z − H(u)), (0 < α ≤ 1).

First, we shall prove that for all α ∈ (0, 1], the operator Kα has a fixed point uα .
In fact, since the semigroup {Ta(t)}t≥0 is compact, then using the result from [3],
the smoothness and the boundedness of the nonlinear term G, we obtain that the
operator H is compact and the set Rang(H) is compact.

On the other hand, since G is bounded and ‖ Ta(t) ‖≤ Me−μt, t ≥ 0, there exists a
constant R > 0 such that

‖ H(u) ‖≤ R, ∀u ∈ L2(0, τ ; U).

Then,

‖ Kα(u) ‖≤‖ �α ‖ (‖ z ‖ +R), ∀u ∈ L2(0, τ ; U).

Therefore, the operator Kα maps the ball Br(0) ⊂ L2(0, τ ; U) of center zero and
radio r ≥‖ �α ‖ (‖ z ‖ +R) into itself. Hence, applying the Schauder fixed point
theorem, we get that the operator Kα has a fixed point uα ∈ Br(0) ⊂ L2([0, τ ]; U).

Since Rang(H) is compact, without loss of generality, we can assume that the
sequence H(uα) converges to y ∈ Z1. So, if

uα = �α(z − H(uα)) = G∗
a(αI + GaG∗

a)
−1(z − H(uα)),

then

Gauα = Ga�α(z − H(uα)) = GaG∗
a(αI + GaG∗

a)
−1(z − H(uα))

= (αI + GaG∗
a − αI)(αI + GaG∗

a)
−1(z − H(uα))

= z − H(uα) − α(αI + GaG∗
a)

−1(z − H(uα)).

Hence,

Gauα + H(uα) = z − α(αI + GaG∗
a)

−1(z − H(uα)).

To conclude the proof of this theorem, it is enough to prove that

lim
α−→0

{−α(αI + GaG∗
a)

−1(z − H(uα))
} = 0.

From Theorem 3.1 part (d), we get that

lim
α−→0

{−α(αI + GaG∗
a)

−1(z − H(uα))
} = − lim

α−→0

{−α(αI + GaG∗
a)

−1 H(uα)
}

= − lim
α−→0

{−α(αI + GaG∗
a)

−1(H(uα) − y)
}

− lim
α−→0

{−α(αI + GaG∗
a)

−1 y
}

= − lim
α−→0

{−α(αI + GaG∗
a)

−1(H(uα) − y)
}
.

On the other hand, from Theorem 3.1 part (e), we get that

‖ α
(
αI + GaG∗

a

)−1
(H(uα) − y) ‖≤‖ H(uα) − y ‖ .

Therefore, since H(uα) converges to y, we get that

lim
α−→0

{−α(αI + GaG∗
a)

−1(H(uα) − y)
} = 0.
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Consequently,

lim
α−→0

{−α(αI + GaG∗
a)

−1(z − H(uα))
} = 0.

So, putting z = z1 − Ta(τ )z0 and using Eq. (4.2), we obtain the following nice
expression:

z1 = lim
α−→0

{

Ta(τ )z0 +
∫ τ

0
Ta(τ − s)(Bc + B)uα(s)ds +

∫ τ

0
Ta(τ − s)G(s, zuα

, uα)ds
}

.
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