Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Palabras claves o descriptores: PHASE SEPARATION (Comienzo)
Sólo un registro cumplió la condición especificada en la base de información BIBCYT.
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Sander , Evelyn ; Wanner, Thomas
Título: Unexpectedly Linear Behavior for the Cahn--Hilliard Equation
Páginas/Colación: pp. 2182-2202
Url: Ir a http://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJMAP000060000006002182000001&idtype=cvips&gifs=Yeshttp://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJMAP000060000006002182000001&idtype=cvips&gifs=Yes
SIAM Journal on Applied Mathematics Vol. 60, no. 6 May/June 2000
Información de existenciaInformación de existencia

Palabras Claves: Palabras: CAHN--HILLIARD EQUATION CAHN--HILLIARD EQUATION, Palabras: LINEAR BEHAVIOR LINEAR BEHAVIOR, Palabras: PATTERN FORMATION PATTERN FORMATION, Palabras: PHASE SEPARATION PHASE SEPARATION, Palabras: SPINODAL DECOMPOSITION SPINODAL DECOMPOSITION

Resumen
RESUMEN

RESUMEN

 

This paper gives theoretical results on spinodal decomposition for the Cahn--Hillard equation. We prove a mechanism which explains why most solutions for the Cahn--Hilliard equation starting near a homogeneous equilibrium within the spinodal interval exhibit phase separation with a characteristic wavelength when exiting a ball of radius R. Namely, most solutions are driven into a region of phase space in which linear behavior dominates for much longer than expected.

 

The Cahn--Hilliard equation depends on a small parameter $\epsilon,$ modeling the (atomic scale) interaction length; we quantify the behavior of solutions as $\epsilon \rightarrow 0$. Specifically, we show that most solutions starting close to the homogeneous equilibrium remain close to the corresponding solution of the linearized equation with relative distance $O(\epsilon^{2-n/2})$ up to a ball of radius R in the $H^2(\Omega)$-norm, where R is proportional to $\epsilon^{-1+\rho+n/4}$ as $\epsilon \to 0$. Here, $n \in \{ 1,2,3 \}$ denotes the dimension of the considered domain, and $\rho > 0$ can be chosen arbitrarily small. Not only does this approach significantly increase the radius of explanation for spinodal decomposition, but it also gives a clear picture of how the phenomenon occurs.

 

While these results hold for the standard cubic nonlinearity, we also show that considerably better results can be obtained for similar higher order nonlinearities. In particular, we obtain $R \sim \epsilon^{-2 + \rho + n/2}$ for every $\rho > 0$ by choosing a suitable nonlinearity.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (3.149.214.32)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
3.149.214.32 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 3.149.214.32
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *