Inicio Nosotros Búsquedas
Buscar en nuestra Base de Datos:     
Palabras claves o descriptores: UNIFORM APPROXIMATION (Comienzo)
Sólo un registro cumplió la condición especificada en la base de información BIBCYT.
Publicación seriada
Referencias AnalíticasReferencias Analíticas
Autor: Benko, David ; Kroó , András
Título: A Weierstrass-type theorem for homogeneous polynomials
Páginas/Colación: pp. 1645-1665
Fecha: March 2009
Transactions of the American Mathematical Society Vol. 361, no.3 March 2009
Información de existenciaInformación de existencia

Palabras Claves: Palabras: CONVEX BODY CONVEX BODY, Palabras: HOMOGENEOUS POLYNOMIALS HOMOGENEOUS POLYNOMIALS, Palabras: UNIFORM APPROXIMATION UNIFORM APPROXIMATION, Palabras: WEIERSTRASS WEIERSTRASS

Resumen
rtddciyytfd

By the celebrated Weierstrass Theorem the set of algebraic polynomials is dense in the space of continuous functions on a compact set in $ \mathbb{R}^d$. In this paper we study the following question: does the density hold if we approximate only by homogeneous polynomials? Since the set of homogeneous polynomials is nonlinear, this leads to a nontrivial problem. It is easy to see that: 1) density may hold only on star-like 0-symmetric surfaces; 2) at least 2 homogeneous polynomials are needed for approximation. The most interesting special case of a star-like surface is a convex surface. It has been conjectured by the second author that functions continuous on 0-symmetric convex surfaces in $ \mathbb{R}^d$can be approximated by sums of 2 homogeneous polynomials. This conjecture has not yet been resolved, but we make substantial progress towards its positive settlement. In particular, it is shown in the present paper that the above conjecture holds for 1) $ d=2$; 2) convex surfaces in $ \mathbb{R}^d$with $ C^{1+\epsilon}$boundary.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLA - Biblioteca de Ciencias y Tecnologia Felix Morales Bueno

Generados por el servidor 'bibcyt.ucla.edu.ve' (3.142.172.190)
Adaptive Server Anywhere (07.00.0000)
ODBC
Sesión="" Sesión anterior=""
ejecutando Back-end Alejandría BE 7.0.7b0 ** * *
3.142.172.190 (NTM) bajo el ambiente Apache/2.2.4 (Win32) PHP/5.2.2.
usando una conexión ODBC (RowCount) al manejador de bases de datos..
Versión de la base de información BIBCYT: 7.0.0 (con listas invertidas [2.0])

Cliente: 3.142.172.190
Salida con Javascript


** Back-end Alejandría BE 7.0.7b0 *